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Abstract. A characterization of interval P–matrices is given. The result implies that a sym-
metric interval matrix is a P–matrix if and only if it is positive definite (although nonsymmetric
matrices may be involved). As a consequence it is proved that the problem of checking whether a
symmetric interval matrix is a P–matrix is NP–hard.
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1. Introduction. As is well known, an n × n matrix A is called a P–matrix if
all its principal minors are positive. P–matrices play an important role in several
areas, e.g. in the linear complementarity theory since they guarantee existence and
uniqueness of the solution of a linear complementarity problem (see Murty [6]).

A basic characterization of P–matrices was given by Fiedler and Pták [3]: A is a
P–matrix if and only if for each x ∈ Rn, x 6= 0 there exists an i such that xi(Ax)i > 0
holds. This result immediately implies that a symmetric matrix A is a P–matrix if
and only if it is positive definite (Wilkinson [13]). In fact, if A is positive definite, then
for each x 6= 0, from

∑
i xi(Ax)i = xT Ax > 0 it follows that xi(Ax)i > 0 for some i,

hence A is a P–matrix; conversely, if A is a P–matrix, then all its leading principal
minors are positive, hence it is positive definite in view of the Sylvester determinant
criterion [6].

In this paper we focus our attention on interval P–matrices. An interval matrix

AI = [A,A] = {A; A ≤ A ≤ A},

where A and A are n × n matrices satisfying A ≤ A (componentwise), is said to
be a P–matrix if each A ∈ AI is a P–matrix . In section 2 we introduce a finite
set of matrices Az in AI (whose cardinality is at most 2n−1) such that AI is a P–
matrix if and only if all the matrices Az are P–matrices (Theorem 2.3)). In view of a
similar characterization of positive definiteness of AI via the matrices Az (Theorem
2.4), it is then proved in section 3 that a symmetric interval matrix AI (i.e., with
symmetric bounds A, A) is a P–matrix if and only if it is positive definite (Theorem
3.2). This is a generalization of the above result for real symmetric matrices, but it
is not a simple consequence of it since here nonsymmetric matrices may be involved.
As a consequence of this result we obtain that the problem of checking whether a
symmetric interval matrix is a P–matrix is NP–hard (Theorem 3.4). This result
shows that the exponential number of test matrices Az used in the necessary and
sufficient condition of Theorem 2.3 is highly unlikely to be essentially reducible.

2. Characterizations. Let us introduce an auxiliary set

Z = {z ∈ Rn; zj ∈ {−1, 1} for j = 1, . . . , n},
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i.e. the set of all ±1-vectors. The cardinality of Z is obviously 2n. For an interval
matrix

AI = [A, A],

we define matrices Az, z ∈ Z by

(Az)ij =
1
2

(Aij + Aij)− 1
2

(Aij −Aij)zizj

(i, j = 1, . . . , n). Clearly, (Az)ij = Aij if zizj = 1 and (Az)ij = Aij if zizj = −1,
hence Az ∈ AI for each z ∈ Z, and the number of mutually different matrices Az is
at most 2n−1 (since A−z = Az for each z ∈ Z), and equal to 2n−1 if A < A. The
properties in question (P–property and positive definiteness) will be formulated below
in terms of the finite set of matrices Az, z ∈ Z. For a vector x ∈ Rn, let us define its
sign vector

z = sgn x

by

zi =

{
1 if xi ≥ 0

−1 if xi < 0

(i = 1, . . . , n), so that sgn x ∈ Z. For a matrix A = (Aij) we introduce its absolute
value by |A| = (|Aij |); a similar notation also applies to vectors.

The basic property of the matrices Az, z ∈ Z, is summed up in the following
auxiliary result; notice that no assumptions on AI are made.

Theorem 2.1. Let AI be an n × n interval matrix, x ∈ Rn, and let z = sgn x.
Then for each A ∈ AI and each i ∈ {1, . . . , n} we have

(1) xi(Ax)i ≥ xi(Azx)i.

Proof. Let A ∈ AI and i ∈ {1, . . . , n}. Then

|xi(Ax)i − xi((
1
2

(A + A))x)i| = |xi((A− 1
2

(A + A))x)i|

≤ |xi|(|A− 1
2

(A + A)| · |x|)i ≤ |xi|(1
2

(A−A)|x|)i,

hence

xi(Ax)i ≥ xi((
1
2

(A + A))x)i − |xi|(1
2

(A−A)|x|)i.

Since z = sgn x, we have |xj | = zjxj for each j, hence

xi(Ax)i ≥
∑

j

(
1
2

(Aij + Aij)− 1
2

(Aij −Aij)zizj)xixj

=
∑

j

(Az)ijxixj = xi(Azx)i,
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which concludes the proof.
As the first consequence of this result, we prove a Fiedler–Pták type characteri-

zation of interval P–matrices. Notice that the inequality holds “uniformly” here:
Theorem 2.2. An interval matrix AI is a P–matrix if and only if for each

x ∈ Rn, x 6= 0, there exists an i ∈ {1, . . . , n} such that

(2) xi(Ax)i > 0

holds for each A ∈ AI .
Proof. If (2) holds, then each A ∈ AI is a P–matrix by the Fiedler-Pták theorem.

Conversely, let AI be a P–matrix and let x 6= 0. Put z = sgn x, then Az is a P–
matrix, hence by the Fiedler-Pták theorem we have xi(Azx)i > 0 for some i. Then
(1) implies xi(Ax)i ≥ xi(Azx)i > 0 for each A ∈ AI , and we are done.

The following characterization, however, turns out to be much more useful:
Theorem 2.3. AI is a P–matrix if and only if each Az, z ∈ Z, is a P–matrix.
Proof. If AI is a P–matrix, then each Az ∈ AI is obviously also a P–matrix.

Conversely, let each Az, z ∈ Z, be a P–matrix. Let x ∈ Rn, x 6= 0, and let z = sgn x.
Since Az is a P–matrix, there exists an i with xi(Azx)i > 0, then from Theorem
2.1 we obtain xi(Ax)i ≥ xi(Azx)i > 0 for each A ∈ AI , hence AI is a P–matrix by
Theorem 2.2.

Another finite characterization of interval P–matrices, formulated in different
terms, was proved by Bia las and Garloff [1].

In analogy with the terminology introduced for P–matrices, an interval matrix
AI is said to be positive definite if each A ∈ AI is positive definite (i.e., satisfies
xT Ax > 0 for each x 6= 0). The following theorem was proved in [9, Thm. 2]. We give
here another proof of this result to make the paper self-contained and to demonstrate
that it is a simple consequence of Theorem 2.1:

Theorem 2.4. AI is positive definite if and only if each Az, z ∈ Z, is positive
definite.

Proof. The “only if” part is obvious since Az ∈ AI for each z ∈ Z. To prove the
“if” part, take an A ∈ AI and x ∈ Rn, x 6= 0. For z = sgn x, from Theorem 2.1 we
have

xi(Ax)i ≥ xi(Azx)i

for each i, hence

xT Ax =
∑

i

xi(Ax)i ≥
∑

i

xi(Azx)i = xT Azx > 0,

so that A is positive definite. Thus, by definition, AI is positive definite.
The last two theorems reveal that both the P–property and positive definiteness

of interval matrices are characterized by the same finite subset of matrices Az ∈ AI ,
z ∈ Z. This relationship will become even more apparent in the case of symmetric
interval matrices which we shall consider in the next section.

3. Symmetric interval matrices. For an interval matrix AI = [A,A], define
an associated interval matrix AI

s by

AI
s = [

1
2

(A + AT ),
1
2

(A + A
T

)].
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AI is called symmetric if AI = AI
s, which is clearly the case if and only if both A and

A are symmetric. Hence, AI
s is always a symmetric interval matrix. The relationship

between positive definiteness and P–property is provided by the following theorem:
Theorem 3.1. AI is positive definite if and only if AI

s is a P–matrix.
Proof. For each z ∈ Z, let us denote by As

z the matrix Az for AI
s, i.e.

(As
z)ij =

1
4

(Aij + Aji + Aij + Aji)− 1
4

(Aij + Aji −Aij −Aji)zizj

(i, j = 1, . . . , n). Then As
z is symmetric and a direct computation shows that

(3) xT As
zx = xT Azx

holds for each x ∈ Rn. Now, if AI is positive definite, then each Az, z ∈ Z is positive
definite, hence each As

z is positive definite due to (3), so that As
z is a P–matrix,

hence AI
s is a P–matrix by Theorem 2.3. Conversely, if AI

s is a P–matrix, then each
As

z, z ∈ Z is a P–matrix, hence it is positive definite due to its symmetry, thus each
Az, z ∈ Z is positive definite by (3) and AI is positive definite by Theorem 2.4.

Our main result on symmetric interval matrices is now obtained as a simple
consequence of Theorem 3.1.

Theorem 3.2. A symmetric interval matrix AI is a P–matrix if and only if it
is positive definite.

Proof. The result follows immediately from Theorem 3.1 since a symmetric inter-
val matrix AI satisfies AI = AI

s by definition.
At the beginning of the Introduction we showed that a real symmetric matrix is

a P–matrix if and only if it is positive definite. The result of Theorem 3.2 sounds
verbally alike, but it is not a simple consequence of the real case since here nonsym-
metric matrices may be involved. In fact, it can be immediately seen that a symmetric
interval matrix AI = [A, A] contains nonsymmetric matrices if and only if Aij < Aij

holds for some i 6= j.
An interval matrix AI is called regular (cf. Neumaier [7]) if each A ∈ AI is

nonsingular. The following result shows that for symmetric interval matrices the P–
property is preserved by regularity. Several other results of this type are summed up
in [10].

Theorem 3.3. A symmetric interval matrix AI is a P–matrix if and only if it
is regular and contains at least one symmetric P–matrix.

Proof. A symmetric interval P–matrix AI is regular (each A ∈ AI has a positive
determinant) and contains a symmetric P–matrix A. If AI is regular and contains a
symmetric P–matrix A0, then A0 is positive definite, hence AI is positive definite by
Theorem 3 in [9], which in the light of Theorem 3.2 means that AI is a P–matrix.

Another relationship between regularity and P–property of interval matrices was
established in [8, Thm. 5.1, assert. (B1)]: an interval matrix AI = [A, A] is regular if
and only if (A+A−S(A−A))−1(A+A+S(A−A)) is a P–matrix for each signature
matrix S (i.e., a diagonal matrix with ±1 diagonal elements). This topic was recently
studied by Johnson and Tsatsomeros [5].

The necessary and sufficient condition of Theorem 2.3 employs up to 2n−1 test
matrices Az, z ∈ Z. There is a natural question whether an essentially simpler cri-
terion can be found. The following Theorem 3.4 gives an indirect answer to this
question: it implies that an existence of a polynomial-time algorithm for checking the
P–property of symmetric interval matrices would imply that the complexity classes
P and NP are equal, thereby running contrary to the current (unproved) conjecture
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that P 6=NP. We refer the reader to the classical book by Garey and Johnson [4] for a
detailed discussion of the problem “P=NP” and related issues.

Theorem 3.4. The following problem is NP-hard:
Instance. A symmetric interval matrix AI = [A, A] with rational bounds A, A.
Question. Is AI a P–matrix?

Proof. By Theorem 3.2, AI is a P–matrix if and only if it is positive definite;
checking positive definiteness of symmetric interval matrices was proved to be NP-
hard in [11].

Coxson [2] proved that the P–matrix problem for real matrices is co-NP-complete.
His result concerns nonsymmetric matrices since the symmetric case can be solved by
Sylvester determinant criterion which can be performed in polynomial time (Schrijver
[12]). Theorem 3.4 shows that for interval matrices even the symmetric case is NP-
hard.
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