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NP-hardness results for linear algebraic problems with interval data
Dedicated to my father, Mr. Robert Rohn, in memoriam

J. Rohn a

a Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25,
118 00 Prague, Czech Republic

This paper surveys recent results showing that basic linear algebraic problems (such
as checking nonsingularity, solving systems of linear equations, matrix inversion etc.) are
NP-hard for interval data.

1. INTRODUCTION

It is a well-known fact that basic linear algebraic problems (such as determinant eval-
uation, checking nonsingularity, solving systems of linear equations, matrix inversion or
checking positive definiteness) are polynomial-time since they can be solved by Gaussian
elimination which is known to have the property [25]. Although linear algebraic problems
with interval data have been studied for 30 years now, only very recently results began to
appear showing that most of these problems are NP-hard in their usual interval analytic
setting (where “checking” means checking the respective property over all data within
given intervals, and “computing” means computing (exact) bounds on the solution over
all such data). In this paper we survey the recent developments in this area. In section 2
we sum up results concerning properties of interval matrices, whereas section 3 is devoted
to solving linear equations and inverting matrices with interval data. The ideas of the
main proofs are explained in section 4. Emphasis is laid on the complexity issues, there-
fore we do not refer to existing necessary and sufficient conditions or numerical methods
as the current literature is considerable and this would lead us beyond the scope of this
paper.

The NP-hardness of the problems listed here means that each of them is at least as
difficult as the most difficult combinatorial problems belonging to the class NP. Hence,
if the well-known conjecture P 6= NP is true (which is currently widely believed to be
so), then no NP-hard problem can be solved by a general polynomial-time algorithm
(which, of course, does not preclude existence of polynomial algorithms for special classes
of instances). We refer to the standard book by Garey and Johnson [8] for the basic
concepts of the complexity theory. Throughout the paper, all the data (in particular, the
bounds of interval matrices and interval vectors) are assumed to be rational numbers.



2

2. MATRIX PROPERTIES

Let A,A be m× n matrices, A ≤ A (componentwise inequalities). The set of matrices

AI = [A, A] := {A; A ≤ A ≤ A}

is called an interval matrix. In some contexts it is more advantageous to work, instead of
A and A, with the center matrix

Ac =
1
2

(A + A)

and the nonnegative radius matrix

∆ =
1
2

(A− A).

Then AI = [Ac − ∆, Ac + ∆]. With exception of the last theorem in section 3, we shall
consider square interval matrices only, i.e., the case m = n.

The NP-hardness results concerning various properties of square interval matrices are
grouped here into two theorems. In the first one we consider the general case, whereas in
the second one the case of a symmetric interval matrix.

Theorem 2.1 For a square interval matrix AI , each of the following problems is NP-
hard:

(i) check whether each A ∈ AI is nonsingular,

(ii) compute the “radius of nonsingularity”

d(AI) = min{ε ≥ 0; [Ac − ε∆, Ac + ε∆] contains a singular matrix},

(iii) compute

max{det A; A ∈ AI},

(iv) check whether ‖ A ‖2≤ 1 for each A ∈ AI ,

(v) check whether each A ∈ AI is Hurwitz stable,

(vi) compute the “radius of stability”

min{ε ≥ 0; [Ac − ε∆, Ac + ε∆] contains an unstable matrix},

(vii) given a λ ∈ R1, decide whether λ is an eigenvalue of some A ∈ AI .
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The assertion (i) was proved by Poljak and Rohn [14]; we shall describe the main idea
of the proof in section 4. (ii), (iii), (vi) and (vii) are consequences of it (the complexity
of computing d(AI) was also studied by Demmel [6]). The assertions (iv) and (v) are
due to Nemirovskii [12]. The “min” version of (iii) is obviously also NP-hard. It is
worth mentioning that the analogue of the problem (vii) for eigenvectors can be solved in
polynomial time ([17], Thm. 4.1).

A somewhat related result stating that computing the real structured singular value
(introduced by Doyle [7]) is NP-hard was proved by Braatz, Young, Doyle and Morari [3]
and independently by Coxson and DeMarco [5].

The second set of results is formulated for symmetric interval matrices. By definition,
an interval matrix AI = [A, A] is called symmetric if both A and A are symmetric. Hence,
a symmetric interval matrix may contain nonsymmetric matrices. We have these results:

Theorem 2.2 For a symmetric interval matrix AI , each of the following problems is
NP-hard:

(i) check whether each symmetric A ∈ AI is nonsingular,

(ii) check whether each A ∈ AI is positive semidefinite,

(iii) check whether each A ∈ AI is positive definite,

(iv) check whether each A ∈ AI is Hurwitz stable.

The assertions of this theorem, except (ii), are proved in [21]. (i) and (iv) follow
from (iii), whose proof will be sketched in section 4, using characterizations of positive
definiteness and stability given in [19]. The assertion (ii) is due to Nemirovskii [12] and
its proof employs another technique. We note that the NP-hardness of checking Hurwitz
stability of symmetric interval matrices (assertion (iv) here) implies the results for general
interval matrices (assertion (v) of Theorem 2.1). We have included both of them as they
come from different authors and Nemirovskii’s result for general interval matrices has the
priority.

3. LINEAR EQUATIONS AND MATRIX INVERSION

Consider a system of linear interval equations

AIx = bI (1)

where AI is an n×n interval matrix and bI is an interval vector (an n×1 interval matrix).
The solution set X(AI , bI) defined by

X(AI , bI) = {x; Ax = b for some A ∈ AI , b ∈ bI} (2)

is generally nonconvex (see examples in Neumaier [13]). The exact range of the compo-
nents of the solution of (1) is described by the numbers
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xi = min{xi; x ∈ X(AI , bI)}

xi = max{xi; x ∈ X(AI , bI)} (3)

(i = 1, . . . , n); they are called the exact (sometimes, optimal) bounds on solution of (1).
Since in applications we are interested in verified bounds and computation of the exact
bounds is usually afflicted with roundoff errors, we are led to the concept of an enclosure:
an interval vector xI is called an enclosure of the solution set if it satisfies

X(AI , bI) ⊂ xI .

Such an enclosure, of course, exists only if X(AI , bI) is bounded. Various enclosure meth-
ods exist to date (see Alefeld and Herzberger [1] or Neumaier [13] for surveys of results),
but none of them solves the general problem in polynomial time. This phenomenon is
explained by this result:

Theorem 3.1 The following problem is NP-hard: given square AI and bI , compute an
enclosure of X(AI , bI), or verify that X(AI , bI) is unbounded.

Let us call, as customary, AI regular if each A ∈ AI is nonsingular. The proof of
Theorem 3.1, given in [20], relies on the fact that if AI contains at least one nonsingular
matrix, then AI is regular if and only if X(AI , bI) is bounded for some (but arbitrary) bI ;
hence, an enclosure algorithm can be employed for checking regularity which is NP-hard
(Theorem 2.1, (i)).

The previous proof relies heavily on the NP-hardness of checking regularity. But it
turns out that computing the exact bounds remains NP-hard even if regularity can be
verified. Let us call an interval matrix AI = [Ac −∆, Ac + ∆] strongly regular [13] if Ac

is nonsingular and

ρ(|A−1
c |∆) < 1 (4)

holds. A well-known result by Beeck [2] states that a strongly regular interval matrix is
regular; hence, (4) is a verifiable sufficient regularity condition. In addition to (3), let us
also introduce the exact bounds on the inverse of a regular interval matrix by

Bij = min{(A−1)ij; A ∈ AI}

Bij = max{(A−1)ij; A ∈ AI} (5)

(i, j = 1, . . . , n).

Theorem 3.2 For a strongly regular interval matrix AI and an interval vector bI , each
of the following problems is NP-hard:

(i) compute xi, xi (i = 1, . . . , n) given by (3),

(ii) given an interval vector xI , check whether X(AI , bI) ⊂ xI ,
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(iii) compute Bij, Bij (i, j = 1, . . . , n) given by (5),

(iv) given an interval matrix CI , check whether A−1 ∈ CI for each A ∈ AI .

The result (i) is due to Rohn and Kreinovich [23] and the idea of its proof will be
explained in section 4. (ii) is proved in [22] using a similar technique. The assertion (iii)
is due to Coxson [4] whose proof is based on the idea of the proof of NP-hardness of
checking regularity in [14] and on Theorem 3.1 in [18]. The result (iv) can be derived
from the proof of (iii) employing the idea of the proof of (ii).

So far we have assumed that AI is square. Let us now consider the case of an m × n
interval matrix AI and an m-dimensional interval vector bI . The solution set X(AI , bI)
and the exact bounds xi, xi (i = 1, . . . , n) can be again defined by (2), (3).

Theorem 3.3 For a general system (1) we have:

(i) the problem of deciding whether X(AI , bI) 6= ∅ is NP-complete,

(ii) computing xi, xi (i = 1, . . . , n) given by (3) is NP-hard for a system (1) with bounded
solution set X(AI , bI).

The result (i) was presented by Lakeyev and Noskov in [11] without a proof which was
given later in Kreinovich, Lakeyev and Noskov [10]. (ii) was proved also by Kreinovich,
Lakeyev and Noskov in [9]. Both proofs use instances with m > n and therefore cannot
be applied to the square case.

4. IDEAS OF THE MAIN PROOFS

To explain the techniques used, we shall briefly describe the ideas of the main proofs.
A real symmetric n× n matrix A = (aij) is called an MC-matrix if it is of the form

aij

{
= n if i = j
∈ {0,−1} if i 6= j

(i, j = 1, . . . , n). This definition comes from [21], but the concept of matrices of this form
(with a “sufficiently large” M on the diagonal) was first used in [14]. The following result
forms the basic link to the complexity theory:

Theorem 4.1 The following decision problem is NP-complete:
Instance. An n× n MC-matrix A and a positive integer L.
Question. Is zT Ay ≥ L for some z, y ∈ {−1, 1}n?

The proof, given by Poljak and Rohn [14], is based on a polynomial reduction of the
problem of computing the max-cut in a graph to our problem; max-cut is a known NP-
complete problem (Garey and Johnson [8], p. 87).

The result can also be rephrased in this form:
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Theorem 4.2 Computing the number

r(A) = max
{
zT Ay; z, y ∈ {−1, 1}n

}
(6)

is NP-hard for an MC-matrix A.

Let us denote by

E =




1 . . . 1
...
1 . . . 1




the n× n matrix of all ones. Then we have the following equivalence:

Theorem 4.3 Let A be a nonsingular n× n matrix and L a positive integer. Then

zT Ay ≥ L

holds for some z, y ∈ {−1, 1}n if and only if the interval matrix

[A−1 − 1
L

E, A−1 +
1
L

E] (7)

contains a singular matrix.

This result is proved in [15], Thm. 5.2, assertion (R1). Since an MC-matrix A is diago-
nally dominant and therefore nonsingular, and can be inverted (by Gaussian elimination)
in polynomial time [25], we have a polynomial reduction of the NP-complete problem of
Theorem 4.1 to the problem of checking regularity of the interval matrix (7), hence the
latter problem is NP-hard; this proves the assertion (i) of Theorem 2.1.

Next, since an MC-matrix A is symmetric and positive definite [21], the same holds
for A−1. Then, according to [19], Thm. 3, the symmetric interval matrix (7) contains a
singular matrix if and only if it contains a matrix which is not positive definite. Hence
we can again use Theorems 4.1 and 4.3 to prove that the problem of checking positive
definiteness of each A ∈ AI is NP-hard, which is the assertion (iii) of Theorem 2.2. The
result for Hurwitz stability (assertion (iv) of Theorem 2.2) follows from Theorem 6 in [19]
which states that a symmetric AI is Hurwitz stable if and only if the symmetric interval
matrix −AI := {−A; A ∈ AI} is positive definite.

Next we turn to linear interval equations. Given a real nonsingular n×n matrix A, let
us consider the system

AIx = bI (8)

where the (n + 1)× (n + 1) interval matrix AI = [Ac −∆, Ac + ∆] is given by

Ac =
(

A−1 0
(A−1)n. −1

)
(9)
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and

∆ =
(

βE 0
0 0

)
(10)

where (A−1)n. denotes the nth row of A−1 and bI is given by

bI =
[(−βe

0

)
,
(

βe
0

)]

where e = (1, 1, . . . , 1)T ∈ Rn and β is a positive real parameter. The following result is
proved in Rohn and Kreinovich [23]:

Theorem 4.4 Let A be nonsingular and let β satisfy

0 < β <
1

eT |A|e. (11)

Then the interval matrix AI given by (9), (10) is strongly regular and for the system (8)
we have

xn+1 =
β

1− βr(A)
,

where xn+1 is given by (3) and r(A) by (6).

Hence, this result shows that for an appropriately small β, the value of r(A) can be
computed from xn+1 in polynomial time. Since computing r(A) is NP-hard (Theorem 4.2),
the same holds for xn+1 as well. This proves the assertion (i) of Theorem 3.2. The proofs
of (ii)-(iv) are based on similar reasonings [22], [4]. Let us note that the assertion (i) was
formulated in [23] only for regular interval matrices; but it is not difficult to verify that
the interval matrix AI defined by (9), (10) and (11) is strongly regular [22].

The results in sections 2 and 3 due to Nemirovskii [12] or Kreinovich, Lakeyev and
Noskov [9], [10], [11] are proved by another method using NP-completeness of the problems
3-SATISFIABILITY and PARTITION (Garey and Johnson [8], Theorems 3.1 and 3.5).

5. CONCLUSION

We have shown that many linear algebraic problems with interval data are NP-hard.
These results may seem discouraging, but they should not be understood that way. The
real message is as follows: if the conjecture P 6= NP is true, then we cannot expect
existence of general polynomial-time algorithms for solving the problems listed. But this
does not preclude existence of very efficient algorithms for solving special subclasses of
problems frequently occurring in practice (e.g., problems with narrow data intervals).
Many such algorithms are known to date: cf. Alefeld and Herzberger [1], Neumaier [13]
or Rump [24], among many others. In particular, polynomial-time algorithms usually
exist under sign stability assumptions, see e.g. [15], p. 62, [18], Thms. 2.2 and 2.3 and
[16], sect. 5. The “bright side” of NP-hardness of interval computations is considered by
Traylor and Kreinovich [27].
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