
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, 1996 1

An Algorithm for Checking Stability of Symmetric
Interval Matrices

Jiri Rohn

Abstract— A branch-and-bound algorithm for checking
Hurwitz and Schur stability of symmetric interval matrices
is proposed. The algorithm in a finite number of steps either
verifies stability, or finds a symmetric matrix which is not
stable. It can also be used for checking positive definiteness
of nonsymmetric interval matrices.

Keywords— Interval matrix, symmetric matrix, stability,
algorithm

I. Introduction

A square matrix A is said to be (Hurwitz) stable if Re λ < 0
for each eigenvalue λ of A. A square interval matrix

AI = [A, A] := {A; A ≤ A ≤ A} (1)

(componentwise inequalities) is called stable if each A ∈ AI is
stable. Stability of interval matrices has been recently studied
in robust control theory due to its close relationship to stabil-
ity of a linear time-invariant system ẋ(t) = Ax(t) under data
perturbations.

In this paper we focus our attention on symmetric interval
matrices; by definition, an interval matrix (1) is called sym-
metric if both the matrices A and A are symmetric. Hence, a
symmetric interval matrix may contain nonsymmetric matrices.
Necessary and sufficient conditions for stability of symmetric in-
terval matrices, formulated in terms of stability of a finite subset
of matrices in AI , were given by Soh [7], Hertz [1], Wang and
Michel [8] and Rohn [5]. In all the cases, the cardinality of
the set of test matrices is exponential in the matrix size, there-
fore the conditions are hardly applicable for higher dimensions.
This fact is explained by a recent result stating that checking
stability of symmetric interval matrices is NP-hard (Rohn [6]);
Nemirovskii [3] proved earlier that the problem of checking sta-
bility of general interval matrices is NP-hard.

In this paper we propose a branch-and-bound-type algorithm
for checking stability of symmetric interval matrices, based on
necessary and/or sufficient stability conditions. In view of the
NP-hardness result, the algorithm cannot be expected to cir-
cumvent exponentiality in the verification process in general,
but due to the built-in branch-and-bound strategy it reduces
the amount of computations essentially in many cases. We wish
to point out that, in contrast to stability checks based on suffi-
cient conditions only, this algorithm always yields a result: in a
finite number of steps it either verifies stability of AI , or finds
an unstable symmetric matrix in AI . The branch-and-bound
technique was used by Kokame and Mori [2] for checking stabil-
ity of matrix polytopes; our approach makes use of the specific
structure of interval matrices.

The paper is organized as follows. In section 2 we give the the-
oretical background of the algorithm, which itself is described
in section 3, where it is also proved that it checks stability or
finds an unstable symmetric matrix in a finite number of steps.
An example is presented in section 4 and applications of the al-
gorithm to some other problems (including Schur stability) are
given in section 5.

The author is with the Faculty of Mathematics and Physics, Charles
University, Prague, and with the Institute of Computer Science, Academy
of Sciences, Prague, Czech Republic.

This work was supported by the Czech Republic Grant Agency under
grant 201/93/0429.

II. Theoretical background

For an n× n symmetric interval matrix (1), using the set

Z0 = {z ∈ Rn; zj ∈ {−1, 0, 1} for each j},
we define real matrices Az, Dz, z ∈ Z0 by

(Az)ij =





1
2 (Aij + Aij) if zizj = 0 and i 6= j

Aij if zizj = 1 or i = j
Aij if zizj = −1

(2)

and

(Dz)ij =

{
1
2 (Aij −Aij) if zizj = 0 and i 6= j
0 if zizj 6= 0 or i = j

(3)

(i, j = 1, . . . , n). It follows from the definition that for each
z ∈ Z0, both the matrices Az and Dz are symmetric, Az ∈ AI

and Dz ≥ 0. Let us additionally introduce the set

Z = {z ∈ Rn; zj ∈ {−1, 1} for each j},
so that Z ⊂ Z0. First we have this necessary and sufficient
condition:

Theorem 1: A symmetric interval matrix AI is stable if and
only if Az is stable for each z ∈ Z, z1 = 1.

Proof: It follows from (2) that for each z ∈ Z the matrix
Az is of the form

(Az)ij =

{
Aij if zizj = 1
Aij if zizj = −1

(4)

hence Theorem 6 in [5] gives that AI is stable if and only if
each Az, z ∈ Z is stable. But since Az = A−z due to (4), it is
sufficient to consider the z’s with z1 = 1 only.

Let us note that the matrices Az were defined for z ∈ Z0

(for the purposes of the main algorithm in section 3), but only
those satisfying z ∈ Z, z1 = 1 are used in the necessary and
sufficient condition of Theorem 1 which requires checking 2n−1

symmetric matrices for stability. In order to get this number
possibly decreased, we shall employ the condition in frame of
a branch-and-bound strategy. For this purpose we shall need a
verifiable sufficient condition for stability of symmetric interval
matrices which is provided in the next theorem. Here, I denotes
the unit matrix and ‖D‖1 = maxj

∑
i
|dij | for D = (dij).

Theorem 2: A symmetric interval matrix

[A−D, A + D]

is stable if the symmetric matrix

A + ‖D‖1I (5)

is stable.
Proof: Take a z ∈ Z and consider the matrix Az defined

for [A, A] := [A−D, A + D] by (2). Since D is symmetric and
nonnegative, for each x ∈ Rn, ‖x‖2 = 1 we have

xT (Az −A)x ≤ |x|T D|x| ≤ max
‖y‖2=1

yT Dy

= λmax(D) = %(D) ≤ ‖D‖1,

which implies

xT Azx = xT Ax + xT (Az −A)x ≤ xT (A + ‖D‖1I)x < 0

2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, 1996

in view of stability of (5). Hence for the maximal eigenvalue of
the symmetric matrix Az we have

λmax(Az) = max
‖x‖2=1

xT Azx < 0,

which means that Az is stable. Hence each Az, z ∈ Z is stable,
and from Theorem 1 we conclude that [A−D, A + D] is stable.

Checking stability of a symmetric matrix Ã can be performed
in two ways: either by computing λmax(Ã) (see [4]) and checking
its negativity, or by verifying that the matrix −Ã is positive
definite, using Sylvester determinant criterion.

Next we shall also need a verifiable sufficient condition for
checking instability of a symmetric interval matrix AI . Accord-
ing to Theorem 1, AI is unstable if and only if λmax(Az) ≥ 0 for
some z ∈ Z, z1 = 1. The algorithm described below generates
a sequence of matrices Az with ascending values of λmax(Az).
For a vector x ∈ Rn, we define its sign vector sgn x by

(sgn x)j =

{
1 if xj ≥ 0

−1 if xj < 0,

hence sgn x ∈ Z for each x. We have this algorithm for checking
instability of AI = [A−D, A + D]:

compute λmax(A) and a corresponding eigenvector x;
repeat

z := sgn x;
compute λmax(Az) and a corresponding eigenvector x

until (λmax(Az) ≥ 0 or Dijzixizjxj ≥ 0 for each i, j);
if λmax(Az) ≥ 0 then {AI is unstable}
else {instability was not verified}.

Theorem 3: The algorithm in a finite number of steps either
verifies instability of AI , or fails.

Proof: Since the two options for termination of the algo-
rithm are obvious from its description, we must prove its finite-
ness only. To this end, we shall prove that for each successive z
and z′ generated by the algorithm we have

λmax(Az) < λmax(Az′). (6)

This will imply that the sequence {λmax(Az)} is strictly increas-
ing, hence the same z cannot be generated twice, and since the
set Z is finite, the finiteness of the algorithm will follow. Denote
S = diag{z1, . . . , zn}, i.e. S is the diagonal matrix with diag-
onal vector z. Then from (4) we have that Az can be written
as Az = A + SDS. Let x be the eigenvector corresponding to
λmax(Az) computed by the algorithm and normalized so that
‖x‖2 = 1. Then

λmax(Az) = xT (A + SDS)x = xT Ax +
∑
i,j

zixiDijzjxj

< xT Ax +
∑
i,j

|xi|Dij |xj | (7)

since the algorithm did not stop at z, hence it must have been
zixiDijzjxj < 0 for some i, j. Now, since z′ = sgn x, for S′ =
diag{z′1, . . . , z′n} we have

xT Ax +
∑
i,j

|xi|Dij |xj | = xT Ax +
∑
i,j

z′ixiDijz
′
jxj

= xT (A + S′DS′)x ≤ λmax(Az′) (8)

since Az′ = A + S′DS′, hence (7) and (8) imply (6), which
completes the proof.

This algorithm proved to perform surprisingly effectively (see
section 4). We ascribe this feature to the built-in “steepest
ascent” strategy: as it can be seen from the proof, for current
z and x the next z′ computed by the algorithm satisfies

xT Az′x = max{xT Az̃x; z̃ ∈ Z},

i.e. the algorithm takes the steepest ascent in maximizing
xT Az̃x for fixed x.

III. The algorithm

We first give an informal description of the general algorithm.
Starting from AI , it proceeds by bisections towards the matrices
Az, z ∈ Z, z1 = 1 used in the necessary and sufficient condition
of Theorem 1. This is formally done by constructing successively
matrices Az, z ∈ Z0, z1 = 1 (starting from z∗ = (1, 0, . . . , 0)T)
and by replacing zeros in the z’s by −1 or 1. If for some z ∈
Z0 the symmetric interval matrix [Az − Dz, Az + Dz] ⊆ AI is
found unstable, then the algorithm terminates; if Az + ‖Dz‖1I
is stable, then the interval matrix [Az −Dz, Az + Dz] is stable
(Theorem 2) and is removed from further considerations. If
Az + ‖Dz‖1I is not stable, then we must replace some zero
entry in the current z by −1 and 1. To this end, we first find
indices i, j, i < j, satisfying

(Dz)ij = max
k<m

(Dz)km. (9)

Since Az is stable, Az +‖Dz‖1I is not stable and Dz is symmet-
ric, we have (Dz)ij > 0 and zizj = 0 (due to (3)). Set h := i
if zi = 0 and h := j otherwise, so that zh = 0. Then we can
construct a pair of new vectors z1, z2 ∈ Z0 by

z1
h = −1, z1

k = zk otherwise

and
z2

h = 1, z2
k = zk otherwise,

and insert them into the list L of items to be tested. Notice that
since both Az and Dz given by (2), (3) are uniquely determined
by z, we can keep only the vector z in the list L; this reduces
the storage requirement from 2n2 to n, thereby increasing sig-
nificantly the size of interval matrices that can be processed on
a given computer. The detailed description of the algorithm is
as follows:

L := {(1, 0, . . . , 0)T }; unstab:=false;
repeat

remove the topmost entry z from L;
compute Az, Dz by (2), (3);
apply the algorithm of section 2 to check [Az −Dz, Az + Dz]
for instability;
if [Az −Dz, Az + Dz] is unstable then unstab:=true
else

if Az + ‖Dz‖1I is unstable then
find i, j satisfying (9);
if zi = 0 then h := i else h := j;
z1 := z; z1

h := −1;
z2 := z; z2

h := 1;
insert z1, z2 into L

until (L = ∅ or unstab);
if unstab then {AI is unstable}
else {AI is stable}.

ROHN: STABILITY OF SYMMETRIC INTERVAL MATRICES 3

We shall now prove that the algorithm yields an answer in a
finite number of steps.

Theorem 4: For each symmetric interval matrix AI , the al-
gorithm after a finite number of steps either verifies stability of
AI , or finds an unstable symmetric matrix in AI .

Proof: The algorithm starts from z∗ = (1, 0, . . . , 0)T and
in each loop it replaces a zero entry in the current vector z
by −1 and 1. Therefore the same z never reappears, and the
number of steps of the algorithm is finite.

If [Az −Dz, Az + Dz] was proved unstable for some z ∈ Z0,
then the algorithm of section 2 found an unstable symmetric
matrix Az̃ for some z̃ ∈ Z, hence AI is unstable. Thus to
complete the proof, we must show that if L = ∅ at some step,
then AI is stable.

Take a z̃ ∈ Z with z̃1 = 1. Since the algorithm started
from z∗ and proceeded by replacing zeros by −1’s and 1’s, it
must have constructed, among others, a sequence of z’s (with
decreasing number of zeros), each of them having the property

zi 6= 0 ⇒ zi = z̃i (10)

for each i. Since L = ∅, the algorithm must have constructed at
some stage a z ∈ Z0 satisfying (10) such that Az + ‖Dz‖1I was
found stable, i.e. the interval matrix [Az − Dz, Az + Dz] was
proved to be stable. However, from the definition of Az, Dz in
(2), (3) it follows that (10) implies Az̃ ∈ [Az − Dz, Az + Dz],
hence Az̃ is stable. Thus we have proved that Az̃ is stable for
each z̃ ∈ Z with z̃1 = 1, which according to Theorem 1 means
that AI is stable.

IV. Example

To check the efficiency of the algorithm, we constructed a
7×7 matrix with integer coefficients randomly generated in the
interval [−9, 9]:

A =




4 1 2 −4 −4 5 −9
5 6 4 −9 −2 7 6

−2 9 7 −8 9 −3 0
5 −8 2 −1 −4 2 3

−4 −4 6 6 2 9 8
−5 4 9 −5 1 −7 9

3 −9 1 −8 −8 6 −4




.

This matrix is nonsingular, hence

A = −AT A

is symmetric and stable. We shall consider symmetric interval
matrices of the form

AI
ε = [A, A + ε∆]

where ε is a nonnegative parameter and

∆ =




0 2 3 3 9 9 4
2 2 1 1 6 4 4
3 1 7 3 6 2 1
3 1 3 5 0 4 9
9 6 6 0 2 7 3
9 4 2 4 7 2 9
4 4 1 9 3 9 6




is a randomly generated symmetric matrix with integer coeffi-
cients in the interval [0, 9]. For each ε > 0, let us denote by ν(ε)
the number of interval matrices [Az −Dz, Az + Dz] checked for
stability or instability by the main algorithm when applied to

AI
ε; hence, if AI

ε is stable, then ν(ε) is exactly the number of
z’s inserted into the list L. It turns out that for ε ∈ [0, 0.8] we
always have ν(ε) = 1, hence the sufficient condition of Theo-
rem 2 checks stability immediately at the first interval matrix
[Az∗ − Dz∗ , Az∗ + Dz∗], z∗ = (1, 0, . . . , 0)T . Continuation for
larger values of ε is summed up in the following table:

ε stab./unstab. ν(ε)

0.8 stable 1
0.9 stable 23
1.0 stable 23
1.1 stable 35
1.2 stable 47
1.3 stable 67
1.4 stable 85
1.5 unstable 1

Notice that a direct application of the necessary and sufficient
condition of Theorem 1 requires checking 26 = 64 matrices for
stability. If we increase ε from 0 on by step 0.01, then ν(ε) ≤
64 for ε ∈ [0, 1.28]. Values of ν(ε) greater than 64 occur for
ε ∈ [1.29, 1.47], with the peak at ν(1.47) = 109; hence, for
ε ∈ [1.29, 1.47] a direct application of Theorem 1 gives the result
with a lower computational effort. Change to instability occurs
between 1.47 and 1.48:

ε stab./unstab. ν(ε)

1.41 stable 89
1.42 stable 89
1.43 stable 87
1.44 stable 91
1.45 stable 99
1.46 stable 99
1.47 stable 109
1.48 unstable 1
1.49 unstable 1
1.50 unstable 1

Particularly surprising here is the performance of the algorithm
for checking instability from section 2 (last three lines of the
table) which detects instability immediately at the first interval
matrix [Az∗−Dz∗ , Az∗+Dz∗] in all three cases. A more detailed
zooming shows that initially the number of interval matrices
checked for instability is greater than 1, but decreases rapidly
to 1 (dots indicate intervals of constant values of ν(ε)):

ε stab./unstab. ν(ε)

1.4766 stable 103
1.4767 unstable 16

.
1.4770 unstable 16
1.4771 unstable 22

.
1.4782 unstable 22
1.4783 unstable 16
1.4784 unstable 1
1.4785 unstable 1

.

From ε = 1.479 on, the algorithm needs to compute at most
three values of λmax(Az) to detect instability. These results
(also confirmed on other examples) indicate that the algorithm
for checking instability might be very effective and deserves to
be further studied.

4 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, 1996

V. Applications

The algorithm can also be used for solving some other prob-
lems that can be reformulated in terms of Hurwitz stability of
symmetric interval matrices.

1. Schur stability of symmetric interval matrices. A sym-
metric interval matrix AI = [A, A] is called Schur stable if each
symmetric A ∈ AI is Schur stable, i.e. satisfies %(A) < 1 (% is
the spectral radius). As proved in [5], Theorem 10, a symmet-
ric AI = [A, A] is Schur stable if and only if the two symmetric
interval matrices

[A− I, A− I] (11)

and
[−A− I,−A− I] (12)

are Hurwitz stable. Hence Schur stability of AI can be verified
by applying the algorithm twice to the interval matrices (11)
and (12). Checking Schur stability is NP-hard, cf. [6].

2. Positive definiteness of interval matrices. As proved in
[5], Theorems 2 and 6, a general (not necessarily symmetric)
square interval matrix AI is positive definite (i.e., each A ∈ AI

satisfies xT Ax > 0 for each x 6= 0) if and only if the symmetric
interval matrix [

−1
2

(A + A
T

),−1
2

(A + AT)
]

(13)

is Hurwitz stable. Hence, applying the algorithm to the sym-
metric interval matrix (13), we can check positive definiteness
of an interval matrix in a finite number of steps. The problem
is again NP-hard in general [6].

3. Stability of nonsymmetric interval matrices. In [5], Theo-
rem 7 it is proved that if the symmetric interval matrix

AI
s =

[
1
2

(A + AT),
1
2

(A + A
T

)
]

(14)

is stable, then
AI = [A, A]

is also stable; the converse statement, however, is generally not
true (cf. a counterexample following Theorem 7 in [5]). Thus,
if the algorithm applied to (14) verifies stability of AI

s, then we
have also verified stability of AI . However, if AI

s is proved to be
unstable, then no conclusion concerning AI can be drawn from
this fact.

Acknowledgments

The author wishes to thank three anonymous referees for
their constructive criticism that helped to improve essentially
the results of this paper.

References
[1] D. Hertz, “The extreme eigenvalues and stability of real symmetric

interval matrices,” IEEE Trans. Autom. Contr., vol. 37, pp. 532-
535, 1992.

[2] H. Kokame and T. Mori, “A branch and bound method to check
the stability of a polytope of matrices,” in: Robustness of Dynamic
Systems with Parameter Uncertainties (M. Mansour, S. Balemi and
W. Truoel, eds.), Birkhäuser Verlag, Basel 1992, pp. 125-137.

[3] A. Nemirovskii, “Several NP-hard problems arising in robust stabil-
ity analysis,” Math. Control Signals Syst., vol. 6, pp. 99-105, 1993.

[4] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall,
Englewood Cliffs, NJ 1980.

[5] J. Rohn, “Positive definiteness and stability of interval matrices,”
SIAM J. Matrix Anal. Appl., vol. 15, pp. 175-184, 1994.

[6] J. Rohn, “Checking positive definiteness or stability of symmetric
interval matrices is NP-hard,” Commentat. Math. Univ. Carol., vol.
35, pp. 795-797, 1994.

[7] C. B. Soh, “Necessary and sufficient conditions for stability of sym-
metric interval matrices,” Int. J. Control, vol. 51, pp. 243-248, 1990.

[8] K. Wang and A. Michel, “On sufficient conditions for the stability of
interval matrices,” Syst. Control Lett., vol. 20, pp. 345-351, 1993.

