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Abstract

It is proved that checking positive definiteness, stability or nonsingularity of all
[symmetric] matrices contained in a symmetric interval matrix is NP-hard.
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As is well known, a square (not necessarily symmetric) matrix A is called positive
definite if 27 Az > 0 for each x # 0, stable if Re A < 0 for each eigenvalue \ of A, and
Schur stable if p(A) < 1. We prove here that checking these properties is NP-hard (see
[1]) for a symmetric interval matrix A’ = [A4, A] .= {A; A < A < A}. By definition,
Al is called symmetric if both A and A are symmetric; hence, a symmetric A? may
contain nonsymmetric matrices. If A’ is symmetric and A € A’, then $(A+ A7) € AL,
Let Amin(A) denote the minimal eigenvalue of a symmetric matrix A. We have these
results:

Theorem 1 For a symmetric interval matriz A’ with rational bounds, each of the
following problems is NP-hard:

(i) check whether each A € Al is positive definite,

(ii) check whether each symmetric A € Al is positive definite,
(iii) check whether each A € Al is stable,
(iv) check whether each symmetric A € Al is stable,

(v) check whether each A € Al is nonsingular,
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(vi) check whether each symmetric A € Al is nonsingular,
(vii) check whether each symmetric A € Al is Schur stable,

(viii) given rational numbers a,b, a < b, check whether Apmin(A) € (a,b) for each
symmetric A € AL,

Proof. Let us call a symmetric real n x n matrix A = (a;;) an MC-matrix if
a; =n and a;; € {0,—1} for i # j (4,7 = 1,...,n). Then for each z # 0 we have
T Ax > nlz|3 — Xy |ziz;] = (n+ 1)||z]]3 — [|=[|3 > [|lz]|3 > 0, hence A is positive
definite (and so is A™'). For an MC-matrix A and a positive integer L, let us form
three symmetric interval matrices

1 1
Al = [A_l — ZeeT,A_l + ZeeT
1 1
AL = [Al—Lee AT+ e ]
and 1 1 1 1
AI—[I Lear ey re Lea g Lo
1 —i—m( 7ee ), +m( +ree )|,
where e = (1,1,...,1)", I is the unit matrix and m = [[A7'|| + % + 1. Hence,

={-A;Aec A}, Al ={I+ LA A e AJ} and Q(A’) < ||A’||OO < m for each

A" € AT, We shall prove that the followmg assertions are mutually equivalent:

0) 27Az > L for some z € {—1,1}",

1

I contains a matrix which is not positive definite,
I

2

contains a symmetric matrix which is not positive definite,
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I contains a symmetric unstable matrix,
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I contains a singular matrix,

6

! contains a symmetric singular matrix,
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. contains an unstable matrix,
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contains a symmetric matrix which is not Schur stable,
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8) Amin(A’) & (0,m) for some symmetric A’ € AL

We prove 0) = 6) = 2)=8)=2)=4)=7)=4)=3)=1)=5)=0). 0) = 6):
If 27Az > L for some z € {—1,1}", then the matrix A’ = A~ — (2TA2)7 1227 is
symmetric, belongs to A’ and satisfies A’Az = 0, hence it is singular. 6) = 2

obvious. 2) < 8): For a symmetric A’ € A’  since o(A’) < m, we have that A’
is not positive definite if and only if A\yin(A') ¢ (0,m). 2) = 4): If a symmetric
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A" € Al is not positive definite, then Apax(—A") = —Auin(A4’) > 0, hence —A’ is
unstable and —A’ € Al. 4) & 7): For each symmetric A’ € A}, since o(A’) < m, we
have that A’ is unstable if and only if J + -A’ € A{ is not Schur stable. 4) = 3)
is obvious. 3) = 1): If A € A/ is unstable, then by Bendixson theorem 0 < Re A <
Amax(2(A + AT)), hence for A’ = —1(A + AT) we have A’ € AT and A\pin(4’) < 0, s0
that A’ is not positive definite. 1) = 5): Let A € A’ be not positive definite. Put
to = sup {t €1[0,1]; A7 + t(%(fl + AT) — A1) is positive deﬁnite}. Then the matrix
A = A7 4 to(3(A+ AT) — A7Y) is symmetric, belongs to A’ (due to its convexity)
and is positive semidefinite, but not positive definite, hence A\yin(A’) = 0, so that A’
is singular. 5) = 0): Let A’z = 0 for some A’ € Al, x # 0. Define z € {-1,1}"
by z; = 1if z; > 0 and z; = —1 otherwise (j = 1,...,n). Then e’|z| = 27z =
ZTAAT — Az < 2T Alfee”|z|, which implies L < [2TAle = 2T Az (since A is
diagonally dominant). This proves that the assertions 0) to 8) are equivalent. Now,
in [3, Theorem 2.6] it is proved that the decision problem

Instance. An MC-matrix A and a positive integer L.

Question. Is 2T Az > L for some z € {—1,1}"?

is NP-complete. In view of the above equivalences, this problem can be polynomially
reduced to each of the problems (i)—(viii), hence all of them are NP-hard. [ ]

Comments. The result (v) was proved in [3, Theorem 2.8]; here it was included
for completeness. Cf. also Nemirovskii’s results in [2]. Characterizations of posi-
tive definiteness, stability and Schur stability of symmetric interval matrices are given
in [4].
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