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Abstract

It is proved that checking positive definiteness, stability or nonsingularity of all
[symmetric] matrices contained in a symmetric interval matrix is NP-hard.
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As is well known, a square (not necessarily symmetric) matrix A is called positive
definite if xT Ax > 0 for each x 6= 0, stable if Re λ < 0 for each eigenvalue λ of A, and
Schur stable if %(A) < 1. We prove here that checking these properties is NP-hard (see
[1]) for a symmetric interval matrix AI = [A,A] := {A; A ≤ A ≤ A}. By definition,
AI is called symmetric if both A and A are symmetric; hence, a symmetric AI may
contain nonsymmetric matrices. If AI is symmetric and A ∈ AI , then 1

2(A+AT ) ∈ AI .
Let λmin(A) denote the minimal eigenvalue of a symmetric matrix A. We have these
results:

Theorem 1 For a symmetric interval matrix AI with rational bounds, each of the
following problems is NP-hard:

(i) check whether each A ∈ AI is positive definite,

(ii) check whether each symmetric A ∈ AI is positive definite,

(iii) check whether each A ∈ AI is stable,

(iv) check whether each symmetric A ∈ AI is stable,

(v) check whether each A ∈ AI is nonsingular,
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(vi) check whether each symmetric A ∈ AI is nonsingular,

(vii) check whether each symmetric A ∈ AI is Schur stable,

(viii) given rational numbers a, b, a < b, check whether λmin(A) ∈ (a, b) for each
symmetric A ∈ AI .

Proof. Let us call a symmetric real n × n matrix A = (aij) an MC-matrix if
aii = n and aij ∈ {0,−1} for i 6= j (i, j = 1, . . . , n). Then for each x 6= 0 we have
xT Ax ≥ n‖x‖2

2 −
∑

i 6=j |xixj| = (n + 1)‖x‖2
2 − ‖x‖2

1 ≥ ‖x‖2
2 > 0, hence A is positive

definite (and so is A−1). For an MC-matrix A and a positive integer L, let us form
three symmetric interval matrices

AI =
[
A−1 − 1

L
eeT , A−1 +

1
L

eeT
]
,

AI
0 =

[
−A−1 − 1

L
eeT ,−A−1 +

1
L

eeT
]

and

AI
1 =

[
I +

1
m

(−A−1 − 1
L

eeT ), I +
1
m

(−A−1 +
1
L

eeT )
]

,

where e = (1, 1, . . . , 1)T , I is the unit matrix and m = ‖A−1‖∞ + n
L

+ 1. Hence,
AI

0 = {−A; A ∈ AI}, AI
1 = {I + 1

m
A; A ∈ AI

0} and %(A′) ≤ ‖A′‖∞ < m for each
A′ ∈ AI . We shall prove that the following assertions are mutually equivalent:

0) zT Az ≥ L for some z ∈ {−1, 1}n,

1) AI contains a matrix which is not positive definite,

2) AI contains a symmetric matrix which is not positive definite,

3) AI
0 contains an unstable matrix,

4) AI
0 contains a symmetric unstable matrix,

5) AI contains a singular matrix,

6) AI contains a symmetric singular matrix,

7) AI
1 contains a symmetric matrix which is not Schur stable,

8) λmin(A′) /∈ (0,m) for some symmetric A′ ∈ AI .

We prove 0) ⇒ 6) ⇒ 2) ⇒ 8) ⇒ 2) ⇒ 4) ⇒ 7) ⇒ 4) ⇒ 3) ⇒ 1) ⇒ 5) ⇒ 0). 0) ⇒ 6):
If zT Az ≥ L for some z ∈ {−1, 1}n, then the matrix A′ = A−1 − (zT Az)−1zzT is
symmetric, belongs to AI and satisfies A′Az = 0, hence it is singular. 6) ⇒ 2) is
obvious. 2) ⇔ 8): For a symmetric A′ ∈ AI , since %(A′) < m, we have that A′

is not positive definite if and only if λmin(A′) /∈ (0,m). 2) ⇒ 4): If a symmetric
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A′ ∈ AI is not positive definite, then λmax(−A′) = −λmin(A′) ≥ 0, hence −A′ is
unstable and −A′ ∈ AI

0. 4) ⇔ 7): For each symmetric A′ ∈ AI
0, since %(A′) < m, we

have that A′ is unstable if and only if I + 1
m

A′ ∈ AI
1 is not Schur stable. 4) ⇒ 3)

is obvious. 3) ⇒ 1): If Ã ∈ AI
0 is unstable, then by Bendixson theorem 0 ≤ Re λ ≤

λmax(1
2(Ã + ÃT )), hence for A′ = −1

2(Ã + ÃT ) we have A′ ∈ AI and λmin(A′) ≤ 0, so
that A′ is not positive definite. 1) ⇒ 5): Let Ã ∈ AI be not positive definite. Put
t0 = sup

{
t ∈ [0, 1] ; A−1 + t(1

2(Ã + ÃT )− A−1) is positive definite
}

. Then the matrix

A′ = A−1 + t0(1
2(Ã + ÃT ) − A−1) is symmetric, belongs to AI (due to its convexity)

and is positive semidefinite, but not positive definite, hence λmin(A′) = 0, so that A′

is singular. 5) ⇒ 0): Let A′x = 0 for some A′ ∈ AI , x 6= 0. Define z ∈ {−1, 1}n

by zj = 1 if xj ≥ 0 and zj = −1 otherwise (j = 1, . . . , n). Then eT |x| = zT x =
zT A(A−1 − A′)x ≤ |zT A| 1

L
eeT |x|, which implies L ≤ |zT A|e = zT Az (since A is

diagonally dominant). This proves that the assertions 0) to 8) are equivalent. Now,
in [3, Theorem 2.6] it is proved that the decision problem

Instance. An MC-matrix A and a positive integer L.

Question. Is zT Az ≥ L for some z ∈ {−1, 1}n?

is NP-complete. In view of the above equivalences, this problem can be polynomially
reduced to each of the problems (i)–(viii), hence all of them are NP-hard.

Comments. The result (v) was proved in [3, Theorem 2.8]; here it was included
for completeness. Cf. also Nemirovskii’s results in [2]. Characterizations of posi-
tive definiteness, stability and Schur stability of symmetric interval matrices are given
in [4].
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