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Abstract — Zusammenfassung

Enclosing Solutions of Linear Interval Equations is NP-Hard. We show that if the conjecture P # NP is
true, then there does not exist a general polynomial-time algorithm for enclosing the solution set of a
system of linear interval equations.
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Die LisungseinschlieBung bei linearen Intervall-Gleichungen ist NP-hart. Unter Annahme der Vermutung

P # NP wird gezeigt, daB es keinen allgemeinen polynomialen Algorithmus gibt, der die Intervallhiille
der Lésungsmenge eines Systems linearer Intervall-Gleichungen einschlieBt.

1. Introduction

For an n x n interval matrix
A'={A4;A< A< A}
and an n-dimensional interval vector
b = {b;b < b < b}

(componentwise inequalities), the solution set of the system of linear interval equa-
tions

| Alx = b1 (1)
is defined by

X(A",b"):= {x; Ax = bforsome A€ A", be b'}.

Due to the complicated (generally nonconvex) structure of the solution set, it is
customary to estimate the range of the solution of (1) by finding an interval vector
x! = {x;x < x < X} satisfying

X(AL by e x!

(provided X (A’,b") is bounded). Such an interval vector is called an enclosure of
the solution set. Various enclosure methods exist to date (see the monographies by
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Alefeld and Herzberger [1] or Neumaier [3] for a survey); however, none of them
solves the problem in full generality in polynomial time. As an example, consider
the interval Gaussian elimination ([ 1], [3]) which solves the system (1) by Gaussian
elimination performed in interval arithmetic. If it can be carried out till the end,
then it gives an enclosure of the solution set in polynomial time; however, it may
fail at some stage (because each interval coefficient eligible for pivot contains zero)
even in case that X(A’,b") is bounded (see Reichmann [5] for an example). Other
polynomial-time methods known exhibit a similar behavior: each of them works
for some subclass of problems of type (1) only.

In this paper we show that an existence of a fully general polynomial-time enclo-
sure algorithm (which would yield an enclosure of X (A4’, b!) provided it is bounded
and would issue an error message if X(A’,b’) is unbounded) is very unlikely since
it would imply that P = NP, i.e., that each problem solvable by a nondeterministic
polynomial-time algorithm could also be solved by a polynomial-time algorithm,
which runs contrary to the current common belief that P # NP (see Garey and
Johnson [2] for basic concepts of the complexity theory). Hence, there is a strong
evidence that each effective enclosure method for the problem (1) is confined to
work for a particular subclass of problems only.

2. The Result

Throughout this section, A’ always denotes an n x n interval matrix and b! an
n-dimensional interval vector. A” is said to be regular if each 4 € A’ is nonsingular,
otherwise (i.e. if it contains a singular matrix) it is called singular. First we prove an
auxiliary result.

Proposition. Let A’ contain at least one nonsingular matrix. Then the following
assertions are equivalent:

(i) Aisregular,
(i) X(A',b") is bounded for some b’,
(iii) X (A’,b") is bounded for each b'.
Proof: (i) = (iii) follows from Cramer’s rule by continuity of the determinant; (iii) =
(ii) is obvious; (ii) = (i) is proved by contradiction. By assumption, A’ contains a
nonsingular matrix 4,; assume to the contrary that it also contains a singular
matrix A,. For each t € [0, 1] define
A, = AO + f(Al - Ao}s

then 4, € A" in view of the convexity of A’. Furthermore, let

t=min{t € [0, 1]; A4, is singular};

such a t exists since the set of singular matrices contained in A’ is closed. Hence
7€ (0,1]and 4, is singular. Let b’ be arbitrary nonempty. Take a b € b’ and choose
a sequence {t;} such that t; € [0, ) for each j, t;— . Since A, is nonsingular, the
equation
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Ax;=b )

has a solution x; € R". If the sequence {x;} is unbounded, then X(A%L bY) is un-
bounded and we are done. If {x;} is bounded, then it contains a convergent
subsequence, x;, — x. Then, taking the limit in (2), we obtain

Ax=b.
But since A, is singular, there exists an x, # 0 with A.x, = 0. Then we have
A(x + Axg)=b

for each / € R*, thus x + Ax, € X (A, b") for each 4 € R* which gives that X (4’,b")
is unbounded; this proves (ii) = (i). B

The assumption that A’ contains at least one nonsingular matrix cannot be omitted:
in the one-dimensional example [0,0]x, = [1,1], where it is violated, A’ is singular
but the solution set is empty, hence bounded.

Before giving the main result, let us recall that P denotes the class of problems
solvable by polynomial-time algorithms, whereas NP denotes those solvable by
nondeterministic polynomial-time algorithms [2]. The conjecture that P # NP,
although unproved so far, is commonly believed to be true.

Theorem. If P # NP, then there does not exist a polynomial-time algorithm which
for each A! square, b' would

— yield an enclosure of X(A',b") provided X (A’,b") is bounded,
— issue an error message if X (A',b") is unbounded.

Proof: Assuming that such an algorithm exists, we can employ it for checking
regularity of interval matrices as follows. Given A7, first take an A € A’ and check
it for singularity (this can be done in polynomial time, see [7]). If 4 is singular, then
A’ is singular; otherwise, choose any b” and apply the algorithm to enclose X (4”, b").
If an enclosure is found, then A’ is regular; if an error message is issued, then A’ is
singular (Proposition, (i)<>(ii)). Thus, we have a polynomial-time algorithm for
checking regularity of interval matrices. However, this problem has been proved
to be NP-hard (Poljak and Rohn [4]), hence an existence of a polynomial-time
algorithm for an NP-hard problem implies that P = NP (Garey and Johnson [2]),
which is a contradiction. B

As we have seen in the proof, the problem of checking regularity of interval matrices
can be polynomially reduced to the enclosure problem. Since the former one is
NP-hard, the latter one is NP-hard as well. We note that a recent relevant result
[6] shows that computing the optimal (i.e., the narrowest) enclosure is N P-hard even
if the regularity of A’ is assumed.
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