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Abstract. We prove that it is NP-hard to compute the exact componentwise bounds on solutions
of all the linear systems which can be obtained from a given linear system with a nonsingular matrix
by perturbing all the data independently of each other within prescribed tolerances.
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1. Introduction. Given a system of linear equations

Ax = b(1)

where A ∈ Rn×n is nonsingular and b ∈ Rn, consider the perturbed system

A′x′ = b′(2)

with data A′, b′ satisfying

|A′ −A| ≤ ∆(3)

and

|b′ − b| ≤ δ(4)

where ∆ ∈ Rn×n
+ and δ ∈ Rn

+ are correspondingly the matrix and vector of perturba-
tion bounds (the absolute value of a matrix B = (bij) is defined by |B| = (|bij |), and
the inequality (3) is understood componentwise; similarly for vectors). Let X denote
the set of solutions of all the perturbed systems, i.e.

X = {x′; A′x′ = b′ for some A′, b′ satisfying (3), (4)}.

Naturally, we are interested in knowing the exact range of the components of the
solution under the allowed perturbations, i.e. in computing the numbers

xi = min
x′∈X

x′i(5)

xi = max
x′∈X

x′i(6)

(i = 1, . . . , n); we call them the exact componentwise bounds on solutions of the
perturbed systems.
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During the last almost 30 years, the problem of computing the exact compo-
nentwise bounds (formulated often in the framework of systems of linear interval
equations) has received much attention. General methods (assuming only nonsingu-
larity of each matrix A′ satisfying (3)) were given by Oettli [7], Rohn [9] and Shary
[12]; however, all of them require in the worst case an amount of operations which
is exponential in n. As a result, these methods are not applicable to problems of
large dimension n. Therefore, a number of articles deal with special cases (such as
M -matrices [2], H-matrices [6], inverse stable matrices [9], matrices satisfying a spec-
tral condition [11] or diagonally dominant [4], etc.) for which there exist polynomial
algorithms for computing the exact componentwise bounds (or their enclosures). For
surveys of such methods, see the monographes by Alefeld and Herzberger [1] or Neu-
maier [6].

In this paper we show that computing the exact componentwise bounds is NP-
hard (see Garey and Johnson [3] for basic concepts of the complexity theory). Thus,
unless P = NP (which is currently widely believed not to be true), we cannot expect
an existence of polynomial-time algorithms for solving our problem. The NP-hardness
of the computation of (5), (6) for overdetermined systems (A of size m × n, m > n)
was recently established by Kreinovich et al. [5], but the idea of the proof, which
reduces 3-satisfiability to computation of the exact componentwise bounds for linear
systems with matrices of size about 3n× n, cannot be used for the square case.

We carry out the proof of our result by studying a special instance of constant
componentwise perturbations. We show that in this case the optimal value of a
specially chosen linear function over X can be expressed in terms of the reciprocal
value of the so-called radius of nonsingularity which has been recently shown to be
NP-hard to compute (Poljak and Rohn [8]). Then adding one more row and column
to the original system to make the linear function depend on a single variable only,
we obtain the desired result.

2. Auxiliary results. For a given nonsingular matrix A ∈ Rn×n and the linear
system

Ax = 0

(which has a unique solution x = 0), consider the perturbed systems

A′x′ = b′

with

|A′ −A| ≤ βeeT(7)

and

|b′| ≤ βe,(8)

where e = (1, 1, . . . , 1)T ∈ Rn and β is a real parameter. To underline the dependence
on the parameter, let us denote the solution set by Xβ :

Xβ = {x′; A′x′ = b′ for some A′, b′ satisfying (7), (8)}.

We shall first give a description of the set Xβ ; throughout the following text, we use
the norm ‖x‖ = ‖x‖1 = eT |x| =

∑
i |xi|.
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Proposition 2.1. Let A be nonsingular, and let β satisfy

0 < β <
1

eT |A−1|e .(9)

Then each A′ satisfying (7) is nonsingular and we have

Xβ = {x′; x′ =
β

1− β‖A−1c‖A−1c,−e ≤ c ≤ e}.(10)

Proof.
1) Let x′ ∈ Xβ , i.e. A′x′ = b′ for some A′, b′ satisfying (7), (8). Then we have

|Ax′| = |(A−A′)x′ + b′| ≤ βeeT |x′|+ βe = β(‖x′‖+ 1)e, hence if we take

c =
1

β(‖x′‖+ 1)
Ax′,

then we have −e ≤ c ≤ e and Ax′ = β(‖x′‖+ 1)c, which implies

x′ = β(‖x′‖+ 1)A−1c,(11)

hence

‖x′‖ = β(‖x′‖+ 1)‖A−1c‖.(12)

Since

β‖A−1c‖ = βeT |A−1c| ≤ βeT |A−1|e < 1(13)

due to (9), from (12) we obtain

‖x′‖ =
β‖A−1c‖

1− β‖A−1c‖ .

Substituting this equality into (11) leads to

x′ =
β

1− β‖A−1c‖A−1c,(14)

hence x′ is of the form described in (10).
2) Conversely, let x′ be of the form (14) for some c satisfying −e ≤ c ≤ e. Define

a vector z ∈ Rn as follows: zj = 1 if x′j ≥ 0 and zj = −1 otherwise (j = 1, . . . , n).
Then zT x′ = eT |x′| = ‖x′‖, hence

(A− βczT )x′ =
1

1− β‖A−1c‖ (βc− β2‖A−1c‖c) = βc

which means that x′ is a solution of the system

(A− βczT )x′ = βc

where |(A− βczT )−A| = β|c| · |z|T ≤ βeeT and |βc| ≤ βe. Hence, x′ ∈ Xβ .
3) From (13) and (14), we conclude that

‖x′‖ ≤ βeT |A−1|e
1− βeT |A−1|e
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for each x′ ∈ Xβ , hence Xβ is bounded. If some A′ satisfying (7) was singular, then we
would have A′x′ = 0 for some x′ 6= 0, hence λx′ ∈ Xβ for each λ ∈ R1, which would
contradict the boundedness of Xβ . Hence, each A′ that satisfies (7) is nonsingular.

Before proceeding further, let us introduce, for a matrix B ∈ Rn×n, the number

r(B) = max{‖By‖; y ∈ {−1, 1}n}.
A simple reasoning shows that it can be also written as

r(B) = max{zT By; z, y ∈ {−1, 1}n}
which is the form in which it was originally introduced in [8]. Then, we have the
following result:

Proposition 2.2. Let A be nonsingular, and let β satisfy (9). Then for each
i ∈ {1, . . . , n} we have

max
x′∈Xβ

(Ax′)i =
β

1− βr(A−1)
.(15)

Proof. 1) First, we shall prove that

‖A−1c‖ ≤ r(A−1)(16)

holds for each c, |c| ≤ e. For every c that satisfies this inequality |c| ≤ e, let’s define
vectors z, y ∈ {−1, 1}n as follows: zj = 1 if (A−1c)j ≥ 0 and zj = −1 otherwise
(j = 1, . . . , n), and yj = 1 if (zT A−1)j ≥ 0 and yj = −1 otherwise (j = 1, . . . , n).
Then, we have ‖A−1c‖ = eT |A−1c| = zT A−1c ≤ zT A−1y ≤ max{zT A−1y; z, y ∈
{−1, 1}n} = r(A−1), i.e., (16).

2) Let us fix an i ∈ {1, . . . , n} and let x′ ∈ Xβ . According to Proposition 1, we
have

x′ =
β

1− β‖A−1c‖A−1c

for some c such that |c| ≤ e. Since the denominator is positive (due to (9) and (13)),
we have

(Ax′)i ≤ |(Ax′)i| ≤ β

1− β‖A−1c‖ ≤
β

1− βr(A−1)

(due to (16)). Hence,

max
x′∈Xβ

(Ax′)i ≤ β

1− βr(A−1)
.(17)

3) Take y ∈ {−1, 1}n such that

‖A−1y‖ = max{‖A−1y‖; y ∈ {−1, 1}n} = r(A−1).

Since ‖A−1(−y)‖ = ‖A−1y‖, y can be chosen in such a way that yi = 1. According
to Proposition 1, the vector

x′ =
β

1− β‖A−1y‖A−1y
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belongs to Xβ and satisfies the equality

(Ax′)i =
β

1− βr(A−1)
,

hence the upper bound in (17) is achieved, which proves (15).

3. NP-hardness. Now we are able to prove the main result.
Theorem 3.1. For an instance n,A, b, ∆, δ and i ∈ {1, . . . , n} such that each

matrix A′ satisfying (3) is nonsingular, computing both xi and xi given by (5) and
(6) is NP-hard.

Comment. Since checking nonsingularity of all matrices A′ satisfying (3) is already
NP-hard [8], we must include nonsingularity into the assumptions to separate the two
problems.

Proof. In [8], Theorem 2.6 it is proved that computing r(B) is NP-hard for
B ∈ Rn×n. The result was stated there for general matrices, but it remains valid if
we confine ourselves to nonsingular matrices only (since the proof employs a diagonally
dominant matrix, which is nonsingular). We will show that computing r(B) can be
polynomially reduced to the computation of an exact componentwise bound.

For a given nonsingular B ∈ Rn×n, choose a β satisfying

0 < β <
1

eT |B|e(18)

and compute A = B−1 (this can be done in polynomial time). Now, construct the
(n + 1)× (n + 1) matrices

Ã =

(
A 0

An· −1

)

where An· denotes the nth row of A, and

∆ =

(
βeeT 0

0 0

)

and let

b = 0

and

δ =

(
βe
0

)

(e ∈ Rn). Then each A′ ∈ R(n+1)×(n+1) with |A′− Ã| ≤ ∆ is nonsingular by (18) and
by Proposition 1, and for the solution set of the perturbed systems we have

X = {(x, xn+1)T ; x ∈ Rn, x ∈ Xβ , xn+1 = An·x}.

Hence, for the exact componentwise bound on xn+1, we conclude from Proposition 2
that

xn+1 = max
x′∈Xβ

(Ax′)n =
β

1− βr(B)
.
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So, the computation of r(B) has been polynomially reduced to the computation of
xn+1. Thus, since computing r(B) is NP-hard, the same must be true for xn+1 as well.
In this way we have proved the NP-hardness of computing the exact upper bound on
the highest index variable; now by permutation of variables we easily extend this
result to an arbitrary variable. The statement for lower bounds follows immediately
from the result just proved if we observe that the lower bounds differ only in their
signs from the upper bounds for the system Ax = −b under the same ∆ and δ.

Final note. The result can be made more understandable if we point out that
(15) is, in general, a nonconvex optimization problem. Indeed, a lengthy argument
(which we omit here) based on Theorems 1 and 2 in [10] proves that if n ≥ 3, A is
nonsingular and β satisfies (9), then Xβ is a nonconvex set whose convex hull has 2n

vertices which are exactly those points x′ in (10) that correspond to parameter values
t ∈ {−1, 1}n.

REFERENCES

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, New
York, 1983.

[2] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing, 12
(1974), pp. 117–125.

[3] M. E. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

[4] E. R. Hansen, Bounding the solution of interval linear equations, SIAM J. Numer. Anal., 29
(1992), pp. 1493–1503.

[5] V. Kreinovich, A. V. Lakeev, and S. I. Noskov, Optimal solution of interval linear systems is
intractable (NP-hard), Interval Computations, 1993, No. 1, pp. 6–14.

[6] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cam-
bridge, 1990.

[7] W. Oettli, On the solution set of a linear system with inaccurate coefficients, SIAM J. Numer.
Anal., 2 (1965), pp. 115–118.

[8] S. Poljak and J. Rohn, Checking robust nonsingularity is NP-hard, Math. of Control, Signals
and Systems, 6 (1993), pp. 1–9.

[9] J. Rohn, Systems of linear interval equations, Linear Algebra Appl. 126 (1989), pp. 39–78.
[10] J. Rohn, On nonconvexity of the solution set of a system of linear interval equations, BIT, 30

(1989), pp. 161–165.
[11] S. M. Rump, Solving algebraic problems with high accuracy, in: A New Approach to Scien-

tific Computation (U. Kulisch and W. Miranker, Eds.), Academic Press, New York, 1983,
pp. 51–120.

[12] S. P. Shary, A new class of algorithms for optimal solution of interval linear systems, Interval
Computations, 2 (1992), pp. 18-29.


