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Abstract

We prove that a system of linear inequalities with interval-valued
data is weakly solvable (each system obtained by fixing coefficients
in the intervals prescribed has a solution) if and only if it is strongly
solvable (all such systems have a solution in common) and describe
an algorithm for checking strong solvability.

1 Introduction

In this paper we study systems of linear interval inequalities

AIx ≤ bI (1)

where AI = {A; A ≤ A ≤ A} (componentwise inequalities) is an m × n
interval matrix and bI = {b; b ≤ b ≤ b} is an m-dimensional interval vector.
Under the formally written system (1) we understand the family of systems
of linear inequalities

Ax ≤ b (2)

for all A and b satisfying
A ∈ AI , b ∈ bI . (3)

We introduce two concepts of solvability:
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1. a system (1) is called weakly solvable if for each A ∈ AI , b ∈ bI the
system (2) has a solution (which generally depends on A and b)

2. a system (1) is called strongly solvable if there exists an x0 satisfying
Ax0 ≤ b for each A ∈ AI , b ∈ bI (i.e., if all the systems (2), (3) have a
solution in common).

We prove in Theorem 1 below that, rather surprisingly, weak and strong
solvability are equivalent, and describe a method for verifying strong (equiv-
alently, weak) solvability of (1) by means of solving only one system of linear
(not interval) inequalities. As a by-product of the proof, we obtain that if
(1) is not strongly solvable, then it contains an unsolvable system A0x ≤ b
with a matrix A0 ∈ AI of a very special form: for each j, all but at most one
of the coefficients of the j-th column of A0 are fixed either at the lower, or
at the upper bound of the respective interval (Theorem 2), and we describe
a method for constructing such a matrix A0 via solving an auxiliary linear
programming problem. The results obtained are summed up in the form
of an algorithm. Several relevant results are mentioned in the concluding
remarks.

2 The results

To facilitate formulations, let us call a vector x0 a strong solution of (1) if

Ax0 ≤ b

holds for each A ∈ AI , b ∈ bI ; hence, the above-defined strong solvability is
equivalent to the existence of a strong solution to (1). Let us denote the set
of all strong solutions of (1) by XS. We have this description:

Proposition. For a system (1) we have

XS =
{
x1 − x2; Ax1 − Ax2 ≤ b, x1 ≥ 0, x2 ≥ 0

}
.

Proof . Let x ∈ XS. Put x1 = x+ = max{x, 0} (componentwise) and
x2 = x− = max{−x, 0}. Then x1 ≥ 0, x2 ≥ 0 and x = x1 − x2. Furthermore
define a matrix A columnwise by A.j = A.j if xj ≥ 0 and A.j = A.j if xj < 0,
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so that A ∈ AI . Then, since x is a strong solution, we have Ax1 − Ax2 =
Ax ≤ b. Conversely, let x1, x2 be a nonnegative solution to Ax1 − Ax2 ≤ b
and let x = x1 − x2. Then for each A ∈ AI , b ∈ bI we have that Ax =
A(x1 − x2) ≤ Ax1 − Ax2 ≤ b ≤ b, hence x is a strong solution.

Now we have this main result:

Theorem 1 A system of linear interval inequalities (1) is weakly solvable if
and only if it is strongly solvable.

We shall prove Theorem 1 together with this result:

Theorem 2 Let a system (1) be not strongly solvable. Then it contains an
unsolvable system

A0x ≤ b

where A0 is of the following form: for each j ∈ {1, . . . , n} there is an ij ∈
{1, . . . , m} such that

(A0)ij





= Aij for i < ij,

∈
[
Aij, Aij

]
for i = ij,

= Aij for i > ij.

(4)

Proof of Theorems 1 and 2. Obviously, a strongly solvable system (1)
is also weakly solvable. To prove Theorem 2 and also the “only if” part of
Theorem 1, assume that (1) is not strongly solvable. Then, according to the
Proposition, the system of linear inequalities

Ax1 − Ax2 ≤ b
x1 ≥ 0, x2 ≥ 0

does not have a solution, which in view of Farkas lemma implies the existence
of a vector y ≥ 0 satisfying A

T
y ≥ 0, AT y ≤ 0 and bT y < 0. For each

j ∈ {1, . . . , n} and k ∈ {0, . . . ,m} define a number tjk by

tjk =
∑

i≤k

yiAij +
∑

i>k

yiAij

3



(employing a usual convention that
∑
∅ = 0). Then we have

m∏

k=1

tjk−1t
j
k =

(
m−1∏

k=1

tjk

)2

tj0t
j
m =

(
m−1∏

k=1

tjk

)2 (
A

T
y
)

j

(
AT y

)
j
≤ 0,

hence there exists a k ∈ {1, . . . , m} satisfying

tjk−1t
j
k ≤ 0.

But since

tjk−1t
j
k =


∑

i<k

yiAij + ykAkj +
∑

i>k

yiAij





∑

i<k

yiAij + ykAkj +
∑

i>k

yiAij


 ,

we see that there exists an αj ∈ [Akj, Akj] such that
∑

i<k

yiAij + ykα
j +

∑

i>k

yiAij = 0 (5)

holds. Now put ij = k and define A0 by

(A0)ij =





Aij if i < ij,
αj if i = ij,
Aij if i > ij

(i = 1, . . . , m, j = 1, . . . , n), then A0 is of the form (4), A0 ∈ AI and from (5)
we have AT

0 y = 0 which together with y ≥ 0, bT y < 0 implies (again using
Farkas lemma) that the system of linear inequalities

A0x ≤ b

does not have a solution. This proves Theorem 2, and by contradiction also
the “only if” part of Theorem 1.

Let us notice that the proof of Theorem 2 gives a method for constructing
a matrix A0 provided a nonnegative vector y satisfying A

T
y ≥ 0, AT y ≤

0, bT y < 0 is known. Such a vector can be found by solving the linear
programming problem

min
{
bT y; A

T
y ≥ 0, AT y ≤ 0, 0 ≤ y ≤ e

}
(6)
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where e = (1, 1, . . . , 1)T . In fact, the set of feasible solutions of (6) is
nonempty (y = 0 is feasible) and bounded, hence (6) has a finite optimum.
If (1) is not strongly solvable, then from the proof of Theorem 2 (where we
can normalize y to achieve y ≤ e) we know that the optimal value of (6) is
negative. Hence any optimal solution y to (6) satisfies bT y < 0 and can be
used for construction of a matrix A0.

We can sum up our results into the form of a simple algorithm:
Algorithm (for checking solvability of (1)).

1. Solve the system of linear inequalities

Ax1 − Ax2 ≤ b
x1 ≥ 0, x2 ≥ 0

(7)

by any known method (e.g. by phase I of the simplex algorithm).

2. If a solution x1, x2 to (7) is found, set x = x1 − x2 and terminate: (1)
is strongly solvable and x is a strong solution to it.

3. If (7) does not have a solution, find an optimal solution y of the linear
program (6).

4. Using y, construct A0 as in the proof of Theorem 2 and terminate: (1)
is not weakly (nor strongly) solvable and the system A0x ≤ b does not
have a solution.

3 Concluding remarks

We conclude with mentioning several related results.

1. The description of the set of strong solutions XS in the Proposition is
similar to that one used in [2] for characterizing the set of “tolerance
solutions” of a system of linear interval equations.

2. A result related to the form of the matrix A0 in Theorem 2 can be
found in [3], Theorem 5.1, assertion (C7), where it is proved that if a
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square interval matrix AI contains a singular matrix at all, then it also
contains a singular matrix A0 of the form

(A0)ij




∈

{
Aij, Aij

}
for (i, j) 6= (k, m)

∈
[
Ai,j, Aij

]
for (i, j) = (k, m)

for some pair of indices (k, m).

3. It follows from the result by Gerlach [1] that a vector x satisfies Ax ≤ b
for some A ∈ AI , b ∈ bI if and only if it solves a system

(1
2

(A + A)− 1
2

(A− A)S
)

x ≤ b

for some signature matrix S (i.e., a diagonal matrix with diagonal en-
tries 1 or −1). Since there are altogether 2n signature matrices, it
appears that the problem of verifying that no system Ax ≤ b with data
satisfying A ∈ AI , b ∈ bI has a solution is much more difficult than
that of verifying strong solvability.
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