ZAMM · Z. angew. Math. Mech. 74 (1994) 6, T 688

Akademie Verlag

ROHN, J.

On Some Properties of Interval Matrices Preserved by Nonsingularity

MSC (1991): 65G10, 15A48, 15A09

In this note we show that for several frequently used properties of square matrices there holds: each matrix in an interval matrix A^{I} has a property P if and only if A^{I} is nonsingular and contains at least one matrix having the property P.

We begin with listing the properties in question. A square matrix $A = (a_{ij})$ is called *inverse nonnegative* if $A^{-1} \ge 0$, and *inverse positive* if $A^{-1} > 0$ (componentwise inequalities); it is called an M-matrix if $A^{-1} \ge 0$ and $a_{ij} \le 0$ for $i \ne j$. More generally, for two signature matrices S_1 , S_2 (i.e., diagonal matrices with ± 1 diagonal entries) we say that A is of inverse sign pattern (S_1, S_2) if $S_1A^{-1}S_2 \ge 0$, and that A is of strict inverse sign pattern (S_1, S_2) if $S_1A^{-1}S_2 > 0$. A matrix A (not necessarily symmetric) is called positive definite if $x^TAx > 0$ for each $x \ne 0$, and (Hurwitz) stable if Re $\lambda < 0$ for each eigenvalue λ of A.

An interval matrix is a set of matrices $A^{I} = [\underline{A}, \overline{A}] = \{A; \underline{A} \leq A \leq \overline{A}\}$, where \underline{A} and \overline{A} are square, $\underline{A} \leq \overline{A}$. We say that A^{I} has a property P (inverse nonnegative, ..., stable, nonsingular) if each $A \in A^{I}$ has the property P. The following theorem shows that all the above-listed properties are preserved by nonsingularity:

Theorem: Let A^I be nonsingular. Then we have:

- (i) A^{I} is inverse nonnegative if and only if $\bar{A}^{-1} \geq 0$,
- (ii) A^{I} is inverse positive if and only if $\bar{A}^{-1} > 0$,
- (iii) A^{I} is an M-matrix if and only if \bar{A} is an M-matrix,
- (iv) A^{I} is of inverse sign pattern (S_1, S_2) if and only if the matrix $\frac{1}{2}(\underline{A} + \overline{A}) + \frac{1}{2}S_2(\overline{A} \underline{A})S_1$ is of inverse sign pattern (S_1, S_2) ,
- (v) A^{I} is of strict inverse sign pattern (S_1, S_2) if and only if the matrix $\frac{1}{2}(\underline{A} + \overline{A}) + \frac{1}{2}S_2(\overline{A} \underline{A})S_1$ is of strict inverse sign pattern (S_1, S_2) .

Moreover, if both A and \bar{A} are symmetric, then

- (vi) A^{I} is positive definite if and only if at least one $A \in A^{I}$ is positive definite,
- (vii) A^{I} is stable if and only if at least one symmetric $A \in A^{I}$ is stable.

Proof: The "only if" parts follow obviously from the definition; thus we are confined to prove the "if" ones. (i) is proved in [3], Theorem 1, assertion (iv). (ii): From (i) we have that A^I is inverse nonnegative; for each $A \in A^I$, premultiplying the inequality $A \leq \bar{A}$ by A^{-1} and \bar{A}^{-1} we obtain $A^{-1} \geq \bar{A}^{-1} > 0$, hence A^I is inverse positive. (iii): A^I is inverse nonnegative by (i) and for each $A \in A^I$ we have $A_{ij} \leq \bar{A}_{ij} \leq 0$ for $i \neq j$, implying that A^I is an M-matrix. (iv): An obvious computation shows that $\{S_2AS_1; A \in A^I\} = [S_2AS_1, S_2\bar{A}S_1]$, where $\bar{A} = \frac{1}{2}(A + \bar{A}) - \frac{1}{2}S_2(\bar{A} - A)S_1$ and $\bar{A} = \frac{1}{2}(A + \bar{A}) + \frac{1}{2}S_2(\bar{A} - A)S_1$. Since $(S_2\bar{A}S_1)^{-1} = S_1\bar{A}^{-1}S_2 \geq 0$ by assumption, we have in the light of (i) that $[S_2\bar{A}S_1, S_2\bar{A}S_1]$ is inverse nonnegative, hence for each $A \in A^I$ we obtain $S_1A^{-1}S_2 = (S_2AS_1)^{-1} \geq 0$. (v) follows in a similar way from (ii). These assertions (vi) and (vii) are proved in [4], Theorems 3 and 8.

Let us note that the assertions (i)—(v) are rather of theoretical interest since there exists a verifiable necessary and sufficient inverse nonnegativity condition due to KUTTLER [1] which can be easily extended to the cases (ii)—(v) as well. The cases (vi) and (vii) are different since no such a condition is known for them. Here, employing the sufficient nonsingularity condition

$$\varrho(|\underline{A} + \overline{A}|^{-1} (\overline{A} - \underline{A})) < 1$$

(cf. [2]), we obtain from (vi), (vii) verifiable sufficient conditions for positive definiteness or stability of A^{I} .

References

- 1 KUTTLER, J.: A fourth-order finite-difference approximation for the fixed membrane eigenproblem. Math. Computat. 25 (1971), 237-256.
- 2 Neumaier, A.: Interval methods for systems of equations. Cambridge University Press, Cambridge 1990.
- 3 ROHN, J.: Inverse-positive interval matrices. Z. Angew. Math. Mech. 67 (1987), T 492 T 493.
- 4 ROHN, J.: Positive definiteness and stability of interval matrices. SIAM J. Matrix Anal. Appl. 15 (1994), 175-184.

Address: Dr. Jiří Rohn, Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, CZ-11800 Prague, Czech Republic