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POSITIVE DEFINITENESS AND STABILITY OF INTERVAL MATRICES*

JIRI ROHN{

Abstract. Characterizations of positive definiteness, positive semidefinitencss, and Hurwitz and Schur sta-
bility of interval matrices are given. First it is shown that an interval matrix has some of the four properties if
and only if this is true for a finite subset of explicitly described matrices, and some previous results of this type
are improved. Second it is proved that a symmetric interval matrix is positive definite (Hurwitz stable, Schur
stable) if and only if it contains at least one symmetric matrix with the respective property and is nonsingular
(for Schur stability, two interval matrices are to be nonsingular). As a consequence, verifiable sufficient conditions
are obtained for positive definiteness and Hurwitz and Schur stability of symmetric interval matrices.
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Introduction. In this paper we study positive definiteness, positive semidefiniteness,
and Hurwitz and Schur stability of square interval matrices defined in the following way:
an interval matrix 47 is said to be positive definite (positive semidefinite, Hurwitz stable)
if each matrix 4 € 4 is positive definite (positive semidefinite, Hurwitz stable); a slight
deviation from this definition is made for Schur stability where a symmetric interval
matrix 4’ is said to be Schur stable if each symmeiric A € A' is Schur stable. Positive
(semi )definitencss of interval matrices is studied in § 2, Hurwitz stability in § 3, and
Schur stability in § 4. There are two main streams of results that run across these sections.

First, we show that for each of the four properties listed it holds that 47 (assumed
to be symmetric in stability cases) has the property if and only if this is true for a finite
subset of explicitly described matrices in A7. The result for positive (semi)definiteness
is given in Theorem 2, where the respective subset is shown to be of cardinality 2"~ ' (in
the worst case) for an n X » interval matrix 4’; this theorem improves considerably the
earlier result by Shi and Gao [13], which used 2™~ /2 test matrices. A similar result
is given in Theorem 6 for Hurwitz stability of symmetric interval matrices, which is
again characterized by a subset of matrices of cardinality 2”~'. Hertz [6] has recently
proved that stability of this subset implies stability of each symmetric matrix in 4’; our
result shows that stability of this subset already implies stability of the whole of 4”.

Second, we show that a symmetric interval matrix A7 is positive definite (Hurwitz
stable, Schur stable) if and only if it contains at least one symmetric matrix with the
respective property and is regular (for Schur stability, two associated interval matrices
are to be regular; A’ is called regular [9] if each 4 € A’ is nonsingular). These results,
proved in Theorems 3, 8, and 11, reduce the number of test matrices to one but do not
remove exponentiality from the verification process because all the necessary and sufficient
regularity conditions known ([9], [12]) employ some subset of test matrices whose car-
dinality is exponential in the matrix size. Nevertheless, because there exists a sufficient
regularity condition due to Beeck [2], which is known to cover most practical examples,
employing it in the above characterizations leads to sufficient conditions for positive
definiteness and Hurwitz and Schur stability of symmetric interval matrices ( Theorems
4,9, and 12), which can be expected to work well in practical cases. In the final remark
in § 5, we give a modification of the Beeck’s condition that enables us to use an approx-
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imation of the inverse of the center matrix of 4 instead of the exact inverse as required
in the original formulation.

1. Notations and auxiliary results. We introduce some notations and prove a theo-
rem that sums up the basic technical results to be used later in the proofs of the main
theorems.

For a square real matrix 4 = (a;), we denote the transpose by A7, the spectral
radius by p(A), and we introduce its absolute value as the matrix | 4| = (|a;|). A matrix
A is called symmetric if 4 = AT. Symmetric matrices are known to have all eigenvalues
real; we shall denote by Apin(A) and Ay (A), the minimum and maximum eigenvalue
of A, respectively (obviously, Apnin(—A) = —Amax(A4)). Matrix inequalities, as 4 £ B or
A < B, are to be understood componentwise,

Let A, and A be real n X n matrices, A = 0. The set of matrices

A =[A,— A A+ Al ={A; A~ AS A= A, + A)

is called an interval matrix. 4’ is said to be symmetric if both 4, and A are symmetric.
With each interval matrix A’ = [ 4. — A, A. + A] we shall associate the symmetric interval
matrix

Al=[4,— N, 4, + A,
where A, and A’ are given by
A= 45(A4.+ 4D
and
A =LA+ AT).

Obviously, if 4 € A7, then (4 + A7) € Al and A’ is symmetric if and only if
AT = Al
We introduce an auxiliary index set

Y={zeR";|z| =1 forj=1,...,n},

i.e., Y is the set of all +1-vectors; hence, its cardinality is 2. For each z € ¥ we shall
denote by 7T the n X n diagonal matrix with diagonal vector z. Now for each z € Y let
us define the matrix A, by

A, = A. — T,AT,.

Then for each i, j we have (A4,); = (A.); — z;A;z; = (A, — A); if z;z; = 1 and (4;); =
(A, + A)yif z;z; = —1; hence, 4, € A’ for each z € Y and because 4_, = 4., the number
of mutually different matrices A4, is at most 2"~ ! (and equal to 2” ' if A > 0). If 47 is
symmetric, then cach A, is symmetric. The matrices 4., z € Y, will be used in § 2 to
characterize positive (semi)definiteness of an interval matrix by finite means.
Let us now introduce a function /> R"*" = R defined for a matrix A € R"*" by
. . xTAx
() St 1;11101 xTx -~

Obviously, f is well defined. In the following theorem we sum up the basic properties
of f that will be used in the proofs of the main theorems in the subsequent sections.
THEOREM 1. The function f has the following properties:
(1) f(A) =34+ A7) foreach A € R"*7";
(ii) f(A) = Amin(A) for each symmetric A € R"*";
(iii) |f(A+ D) - f(A)| = p(3(D + DT)) for each A, D € R"*";
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(iv) fis continuous in R"™",;
(v) for each interval matrix A' we have
min {f(A); A€ A’} =min {f(A4,);z€ Y};
(vi) for each interval matrix A’ we have
min {f(4); A€ 4’} = min {f(4); 4 € Al};
(vil) each interval matrix A' = [A, — A, A, + A] salisfies
min {f(A4); 4 € A"} = f(Ac) = p(A);

(viil) if A is symmetric and f(A) = 0, then A is singular.

Proof. (i) follows from the fact that x7Ax = x7(1(4 + A7))x for each 4 € R"*"
and x € R". (ii) is well known (cf., e.g., Parlett [10]). To prove (iii), first observe that
from (1) it follows

f(4+ D)z f(4)+ /(D)
for each A and D; this inequality implies
J(4)=/((4+ D)+ (D)) 2 f(4+ D) +f(-D),
which together gives
| f(A+ D)= f()| = max {| (D), [ f(—=D)|}
= max {| /(3(D+ D", | f(=3(D+ D"))|}
= max { | Amin(; (D + D)), [Amax(3(D + D7)}
= p(4(D+ D")).

For (iv) take a matrix norm || - || such that | 47| = || 4| for each A. Then from (iii)
we obtain

|f(4+ D)= f(Di =3(D+ DNl =| DI

for each A4 and D, which proves that f is continuous in R"*",

To prove (v), let 4 € 4" and x # 0. Because | x7(4 — 4.)x| = | x|TA| x|, we obtain
xTAx = xTd.x + xT(4 — A)x = xTA.x — | x|TAl x|. Define a z € Y as follows: z; =
1ifx;= 0 and z; = —1 otherwise (j = 1, ..., n), then | x| = T.x and we have

xTAx z xTA.x — x"T,AT,x = x"A,x;
hence,

xTdx _ xTA,x

T =
xTx xTx

2 f(A;)Z min {f(4,);z€ Y},

which implies that
J(4)Z min {f(A4.);z€ Y}

holds for each 4 € 4! and because A, € A for each z € Y, the assertion follows.
To prove (vi), for each z € Y denote by A" the matrix A, for A%, ie.,

A=A — T,AT, = Y(A. + AT) = T,(3(A+ AT) T, = §(4, + A]).
Then employing (1) we obtain
SUAL) = f(3(A. + AD)) = f(AL);

hence, the assertion (v) implies that the minimum values of fover A’ and A are equal.
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For (vii) let 4 € A?. Since |4 — 4.| = A, using (iii) and Proposition 3.2.4 in [9]
we obtain | f(A) = f(Ac)| S p(4(A — A) + 5(4 — 4)T) = p(3(Aa + AT)) = p(A),
which gives f(A) 2 f(A.) — p(A') and thus also

min {f(A4): A€ A’} = f(A4,) - p(A).

For (viii) under the assumptions, zero is an eigenvalue of A due to (ii), hence A4 is
singular. O

2. Positive (semi)definiteness of interval matrices. A square (not necessarily sym-
metric) matrix A is called positive semidefinite if f( 4) Z 0, which, in view of (1), means
that xTAx 2 0 for each x (hence our definition conforms to the usual one). Similarly,
A is said to be positive definite if /(4) > 0 (i.e., xT4x > 0 for each x # 0). An interval
matrix A is said to be positive (semi)definite if each 4 € A7 is positive (semi)definite.
As a consequence of Theorem 1 we obtain this characterization.

THEOREM 2. Let A! be a square interval matrix. Then the following assertions are
equivalent:

(a) A’ is positive (semi)definite,

(b) Al is positive (semi)definite,

(¢) A; is positive (semi)definite for each z€ Y,

Proof. We shall prove the theorem for the case of positive definiteness of 47; the
proof for positive semidefiniteness runs quitc analogously. By dcfinition, 47 is positive
definite if and only if

min {f(A); A€A4'} >0

holds. Then the equivalence of (a) and (b) follows from the assertion (vi) of Theorem
I and that of (a) and (c) from the assertion (v) of the same theorem. O

The assertion (c¢) shows that positive (semi)definiteness of an interval matrix can
be verified by testing 2” ! matrices from A/ for positive (semi)definiteness. Hence, this
theorem improves considerably the earlier result by Shi and Gao [13], which required
testing 27"~ 172 matrices from A’ (the so-called vertex matrices) for positive
(semi)dcfiniteness; moreover, their result was given for symmetric interval matrices only.
We note that Bialas and Garloff [4] proved a similar characterization of interval P-
matrices (each 4 € A’ is a P-matrix if and only if each 4;, z € Y is a P-matrix), although
they did not explicitly use the matrices 4.

The equivalence “(a) <> (b)” reveals another important property, namely that
verification of positive (semi)definiteness of 4/ always can be performed by inspecting
the associated symmetric interval matrix 47; hence, we can restrict our attention in the
sequel to symmetric interval matrices only. First we have this corollary.

COROLLARY. Let a symmetric interval matrix A" be positive semidefinite. Then it
is positive definite if and only if all the matrices A,, z € Y are nonsingular.

Proof. The “only if” part is obvious because each positive definite matrix is non-
singular. To prove the “if” part, assume to the contrary that 47 is positive semidefinite
but not positive definite. Then from the assertion (c) of Theorem 2 it follows that there
exists a matrix A, that is positive semidefinite but not positive definite. Then f(4;) = 0
and because A, is symmetric, we have that A, is singular (Theorem 1, (viii)), which is a
contradiction. O

In the next theorem we prove that positive definiteness of symmetric interval matrices
is closely related to regularity. Let us recall that a square interval matrix A’ is called
regular [9] if each 4 € A” is nonsingular.

THEOREM 3. A symmetric interval matrix A’ is positive definite if and only if it is
regular and contains at least one positive definite matrix.
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Proof. Again, the “only if” part is obvious. In the proof of the “if” part, as-
sume to the contrary that A’ is regular and contains a positive definite matrix Aowbut
is not positive definite, so that x”4,x = 0 for some 4, € A" and x # 0. Define 4o =
1(Ay+ AJ)and 4, = §(4, + A]), then both A, and A, are symmetric, belong to 4’,
and satisfy

f(Ap) = f(Ao) >0
and
f(A) = f(A4) = 0.

Now define a real function ¢ of one real variable by

(1) = f(tdo + (1 — DA4)),  te€[0,1].

Thgn 7] is continuous by the assertion (iv) of Theorem | and because ¢(0)¢(1) =
f(A) f(A4p) £ 0, there exists a o € [0, 1] with ¢(4y) = 0. Put

A =tode + (1 = to)Ay,

then A is symmetric, A € A’ and f(A4) = 0; hence, the assertion (viii) of Theorem 1 gives
that 4 is singular, which is a contradiction. O

The necessary and sufficient condition of Theorem 3 requires only one matrix to
be tested for positive definiteness. It bears a striking similarity with the characterization
of nonnegative invertibility of interval matrices given in [11], Theorem 1 (each 4 € AT
is nonnegative invertible if and only if A’ is regular and (4. + A) ' = 0). However, the
result is not as pleasant as it might seem because verifying regularity of an interval matrix
is generally a difficult problem as it can be clearly seen from Theorem 5.1 in [12], where
a number of necessary and sufficient regularity conditions are given, all of which require
computation of at least 2"~ ! quantities of some sort (as evaluating determinants, solving
systems of linear equations, inverting matrices, and so on). Nevertheless, there exists an
easily verifiable sufficient regularity condition that, in this author’s experience, covers
most practical examples. Employing it in Theorem 3 leads to this sufficient condition.

THEOREM 4. Let A’ = [A, — A, A + A) be a symmetric interval matrix such that
A, is positive definite and

(2) p(14511A8) <1

holds. Then A' is positive definite.

Proof. Because A, is positive definite, it is invertible and the condition (2) guarantees
regularity of 4’ (see Beeck [2]). Hence, Theorem 3 gives that A’ is positive definite. O

We also note that if (| 4.'|A);; Z 1 for some j, then A’ contains a singular matrix
(assertion (iii) of Corollary 5.1 in [12]); hence, A is not positive definite.

Another sufficient condition can be derived from Theorem 1.

THEOREM 5. Let a symmetric interval matrix A" = [A, — A, Ac + A] satisfy

(3) p(A) = Amin(Ae).

Then A’ is positive semidefinite. Moreover, if the inequality (3) holds sharply, then Al
is positive definite.

Proof. According to the assertions (vii) and (ii) of Theorem 1, we have min {f(A);
A €A’} Z Amin(4:) — p(A) Z 0; hence, f(4) = 0 for each A € A’, so that 4’ is positive
semidefinite. If (3) holds sharply, then f(A) > 0 for each A € A”; hence, A’ is positive
definite. O

In the next section we shall apply the results obtained to characterize stability of
symmetric interval matrices.
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3. Hurwitz stability of interval matrices. A square matrix 4 is called Hurwitz stable
(for the sake of brevity, we shall say only “stable™) if Re A < 0 for each eigenvalue X of
4 (in other words, if all its eigenvalues lic in the open left half of the complex plane).
An interval matrix 4’ is said to be stable if each 4 € 47 is stable, The problem of stability
of interval matrices arises naturally in control theory in connection with the behavior of
a linear time invariant system X(7) = Ax(¢) under data perturbations and has been
extensively studied recently; we refer the reader to the survey paper by Mansour [8] for
a detailed list of references. We investigate here mainly stability of symmetric interval
matrices, which turns out to be closely connected to the contents of the previous section
due to the well-known result that states a symmetric matrix 4 is stable if and only if —4
is positive definite (see, e.g., [5]). However, some care must be taken because a symmetric
interval matrix can contain nonsymmetric matrices whose eigenvalues are not real. As
an example, consider the symmetric interval matrix A’ = [4, — A, 4, + A] with 4, = 0

and
0 1
A= ,
(i o

( 0 1
-1 0
whose eigenvalues are +i.
In contrast to the previous section where we employed the matrices A, = A, —
1.AT,, here we shall characterize stability in terms of matrices

A, = A, + T,AT,, zeY.

which contains the matrix

Obviously, 4, € A7 and all 4, are symmetric if 4’ is symmetric.

THEOREM 6. Let A’ = [A, — A, A, + A) be a symmetric interval matrix. Then the
Jollowing assertions are equivalent:

(a) A’ is stable,

(b) [—A4,— A, —A. + A] is positive definite,

(c) A, is stable for each z € Y.

Proaf. We shall prove that (a) = (¢) = (b) = (a). Let us denote 4y = [—A4, —
A, — A, + A]; notice that 4y = {—A; A€ A’}.

(@) = (¢): The proof is obvious because A, € A’ for each z € Y.

(¢) = (b): Let z € Y. Because A, is symmetric and stable, it follows that all its
eigenvalues are negative; hence, the symmetric matrix

~A, = —A, — T,AT,

has all eigenvalues positive, so that it is positive definite [5]. But —A4. is just the matrix
A, for the interval matrix A¢; hence, A} is positive definite by the assertion (c) of
Theorem 2.

(b) = (a): Let A{ be positive definite. Consider an eigenvalue A of a matrix 4 €
A!. Due to the Bendixson theorem ([15], p. 395), we have

Re A = Anax(3(A4 + 47)),

where the matrix A = J(4 + A”) is symmetric and belongs to A’; hence, —4 € 4.
Thus, —A4 is positive definite so that all eigenvalues of A are negative, which gives that
Re A = Anax(A4) < 0. Hence, 4 is stable, and because it was chosen arbitrarily, 47 is also
stable. O
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There are several previous results relevant to the equivalence (a) <> (c¢). First, let
us recall that a matrix 4 € 4’ is called a vertex matrix of A if for each i, je {1,...,n},
either A; = (4. — A);or A; = (A, + A); holds. Thus, there are exactly 27" vertex matrices
in the most disadvantageous case of A > 0. Clearly, A, is a vertex matrix for each z€ Y.
The first attempt to use vertex matrices for characterizing stability was made by Bialas
[3], who proved that a general interval matrix A’ is stable if and only if all its vertex
matrices are stable. His result was shown, however, to be erroneous by Karl, Greschak,
and Verghese [7] and independently by Barmish and Hollot [1]. Soh [14] proved in-
1990 that the conjecture is true for symmetric interval matrices in this form: if all the
symmetric vertex matrices of A” are stable, then each symmetric 4 € A* is stable. This
result required testing 27"+ /2 vertex matrices for stability. This bound has been essen-
tially improved recently by Hertz [6], who proved (using another notation) that if all
the matrices A, are stable, then each symmetric A € A’ is stable; this reduced the number
of test matrices from 2"+ "2 10 2"~ ! Theorem 6 shows that under the Hertz assumption
each matrix 4 € A’ is already stable.

In Theorem 2 we showed that positive (semi)definiteness of a general interval matrix
can be equivalently formulated in terms of the associated symmetric interval matrix
AL Unfortunately, this nice property does not hold for stability, where only one impli-
cation is true.

THEOREM 7. If Al is stable, then A" is also stable.

Proof. Let \ be an eigenvalue of a matrix 4 € 4’. Then by the Bendixson theorem
we have Re X < Apux(4(A4 + AT)) < 0 because the symmetric matrix 3 (4 + 47 ) belongs
to A and thus has all eigenvalues negative. This proves that 4’ is stable. 0

The converse implication is generally not valid. Consider the interval matrix 47 =

[4. — A, A, + A] with
- 17
-1 -2

and A = 0. Here A is stable because A, is stable (Re A, = Re A, = —4), but 4 is not
because Ama(AL) = (V45 — 1)/2 = 2.85---.

Finally, we give the respective versions of Theorems 3 and 4 for the case of sta-
bility. The reformulations are direct consequences of the equivalence (a) <> (b) of
Theorem 6.

THEOREM 8. A4 symmetric interval matrix A is stable if and only if it is regular and
contains at least one stable symmetric matrix.

Proof. The “only if " part follows from the fact that each stable matrix is nonsingular.
Conversely, if A7 is regular and contains a stable symmetric matrix A4, then A} =
[-4, — A, —A. + Al = {—A4; A € A’} is also regular and contains a positive defi-
nite matrix —4; hence, A4} is positive definite by Theorem 3 and A’ is stable by Theo-
rem 6. |

The last result of this section follows from Theorem 4 applied to the interval matrix
[—A4.— A, —A. + A] and its straightforward proof is omitted.

TIIEOREM 9. Let A1 = [A, — A, A, + A] be a symmetric interval matrix such that
A, is stable and

p(lA4Z"|A) <1

holds. Then A’ is siable.

For a practical verification, the results of this section can be used in the following
way. Given an interval matrix 47, first form the symmetric interval matrix A! and test
it for stability using Theorem 9. If the test is successful, then A’ is stable (Theorem 7).
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This procedure will, however, fail whenever A/ is stable, whereas 47 is not, as, e.g., in
the example following Theorem 7. In such a case another condition must be tried (cf.
Mansour [8] for further results).

Example. Consider the interval matrix 4’ = [4, — A, A, + A] with

-1 -1 2
A= 3 -2 -5
-2 1 -5
and A;; = 0.03 for each i, j. Then for the associated symmetric interval matrix 4! =

[A4. — A, A, + A'], we have
-1 1 0
A= 1 =2 =2

0 -2 -5

and A’ = A. Because A is stable and p(|(A4.,)"'|A") = 0.9 < 1, Theorems 7 and 9 imply
that A7 is stable.

4. Schur stability of interval matrices. A square matrix A is called Schur stable if
p(A) < 1,ie,if |A| <1 for each eigenvalue A of A. We shall consider here Schur stability
of symmetric matrices only to avoid complex eigenvalues that seemingly cannot be easily
handled by the method used. Therefore, we shall say that a symmetric interval matrix
A'is Schur stable if each symmetric matrix A € A' is Schur stable: hence, we do not take
into account the nonsymmetric matrices contained in 47, This definition is in accordance
with the approach employed in [14] or [6].

A necessary and sufficient condition for Schur stability has been recently given by
Hertz [6], who proved that a symmetric interval matrix 47 is Schur stable if and only if
all the matrices A, A,, z € Y are Schur stable. In Theorem 11 below we formulate another
necessary and sufficient condition based on the following result that links Schur stability
to Hurwitz stability.

THEOREM 10. A4 symmetric interval matrix A" = [A. — A, A. + A) is Schur stable
if'and only if the symmetric interval matrices

(4) (4. = 1) — A, (4. — I) + A]
and
(5) (-4, — 1) — A, (4. — 1) + A]

are stable, where I is the unit matrix.

Proof. Only if: Denote the interval matrix (4) by A’ and let A, = (4, — I) +
T.AT, = A, — I for z € Y. Because A, is symmetric and Schur stable, it has all eigen-
values in (—1, 1); therefore, all the eigenvalues of A, belong to (=2, 0); hence, A, is
stable. In view of Theorem 6 this implies thatsz T is stable. Stability of (5) can be proved
in a similar way if we consider the matrices 4, = —A4, — I, z€ Y.

If: Let 4 € A’ be symmetric and let A be an eigenvalue of A. Then A — 1 is an
eigenvalue of the matrix 4 — I that belongs to (4) and hence is stable, which gives A —
I < 0. In a similar way, stability of (5) implies =X — 1 < 0. Hence, |A| < 1; thus, A’ is
Schur stable. O

Now we have this criterion that is again formulated along the lines of Theorems 3
and 8.

THEOREM 1 1. A symmetric interval matrix A’ is Schur stable if and only if it contains
at least one Schur stable symmetric matrix and both the interval matrices (4) and (5)
are regular.
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Proof. Only if: If A’ is Schur stable, then both (4) and (5) are stable by Theorem
10; hence, regular. If: Let some symmetric 4o € A7 be Schur stable and let (4) and (5)
be regular. Then A, — I is symmetric, stable, and belongs to (4); hence, (4) is stable by
Theorem 8. Similarly, stability of (5) can be established by considering the matrix
— Ao — I. Then Theorem 10 gives that 4’ is Schur stable. O

Again, using sufficient regularity condition, we obtain the following.

THEOREM 12. Let A' = [A. — A, A. + A) be a symmetric interval matrix such that
A, is Schur stable and the conditions

(6) (|4, —I17'A) < 1
(7) p(lA.+117'A) < 1

are satisfied. Then A" is Schur stable.
Proof. This is a direct consequence of Theorem 11 because (6) and (7) are the
Beeck sufficient regularity conditions [2] for the interval matrices (4) and (5). a

5. Final remark. In Theorems 4, 9, and 12 we formulated verifiablc sufficient con-
ditions for positive definiteness, Hurwitz and Schur stability of symmetric interval ma-
trices. Each of them involved the sufficient condition (2) for regularity of an interval
matrix A’ = [A. — A, A, + A]. This condition may be seen to be inappropriate for
practical computations because the inverse matrix computed on a computer is usually
afflicted with roundoff errors. Therefore, for practical purposes we propose a modified
condition

(8) p(}1— Q4| +1Qla) <1

involving an arbitrary square matrix Q, because we have: if (8) holds for some Q, then
A" is regular. In fact, for an arbitrary 4 € 4”, we have

QA=1—(I—-QA4.+ Q4. — A4))
and because
p(I — QAc + QA — A)) = p(| I — Q4.] + |Q1A) < 1,

it follows that QA is nonsingular; hence, 4 is nonsingular. Notice that (2) is a special
case of (8) for @ = A;'. In practical computations we recommend to set Q equal to the
computed value of A;'.
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