Short communication

A note on solvability of a class of linear complementarity problems

Jiri Rohn

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Received 29 July 1991 Revised manuscript received 21 February 1992

We give a characterization of unique solvability of an infinite family of linear complementarity problems of a special form by means of a finite subset of this family.

Key words: Linear complementarity problem, nonsingular matrix, P-matrix.

A linear complementarity problem is a problem of the form

$$y = Mz + q$$

$$y \ge 0, \quad z \ge 0,$$

$$y^{\mathsf{T}}z = 0,$$

where M is an $n \times n$ matrix and q an n-dimensional vector; we shall denote this problem by LCP(M, q). A detailed exposition of the linear complementarity theory may be found in Murty's book [1]. In this short note we apply some recent results on systems of linear equations with inexact data [2] to obtain some necessary and sufficient conditions for unique solvability of a whole class of linear complementarity problems of the form LCP($M_1^{-1}M_2$, q) with $A \le M_1 \le B$ and $A \le M_2 \le B$, where A and B are two given $n \times n$ matrices and $q \in \mathbb{R}^n$. (Here, as in the sequel, matrix and vector inequalities are understood componentwise and the inverse of a matrix M is assumed to exist whenever the symbol M^{-1} is used.)

Before formulating the main result we introduce some notations. A diagonal matrix S is said to be a signature matrix if each its diagonal element is equal to 1 or -1, clearly there are 2^n signature matrices of size n, among them the unit matrix I. Let A, B be two $n \times n$ matrices, $A \le B$, and let S be a signature matrix of the same size. We introduce the matrix

Correspondence to: Jiri Rohn, Faculty of Mathematics and Physics, Charles University, Malostranske nam. 25, 11800 Prague, Czech Republic.

$$M_S = K_S^{-1} L_S$$

where

$$K_S = \frac{1}{2}(I+S)A + \frac{1}{2}(I-S)B$$

and

$$L_S = \frac{1}{2}(I-S)A + \frac{1}{2}(I+S)B$$
.

Since S is a signature matrix, each element of K_S is equal to the respective element of either A or B, which implies $A \le K_S \le B$; the same holds for L_S . Further let

$$q_S = K_S^{-1} Se$$

where $e = (1, 1, ..., 1)^T$. Let us recall that a square matrix is called a *P*-matrix if all its principal minors are positive.

Now we have this result:

Theorem. Let A, B be two $n \times n$ matrices, $A \leq B$. Then the following assertions are equivalent:

- (i) Each matrix C satisfying $A \le C \le B$ is nonsingular.
- (ii) The LCP($M_1^{-1}M_2$, q) has a unique solution for all matrices M_1 , M_2 satisfying $A \le M_1 \le B$, $A \le M_2 \le B$ and each right-hand side vector q.
 - (iii) The LCP(M_S , q_S) has a solution for each signature matrix S.
 - (iv) The system

$$y = M_S z + q_s,$$

$$y \ge 0, \quad z \ge 0,$$
(1)

has a solution for each signature matrix S.

(v) M_s is a P-matrix for each signature matrix S.

Proof. (i) \Rightarrow (ii), (i) \Rightarrow (v): If (i) holds, then according to Theorem 1.2 in [2], each matrix of the form $M_1^{-1}M_2$, where $A \le M_1 \le B$ and $A \le M_2 \le B$, is a *P*-matrix. This proves (v) due to the definition of M_S and also implies (ii) in view of the well-known result on unique solvability of a linear complementarity problem LCP(M, M) with a M-matrix M, see [1].

- (ii) \Rightarrow (iii) follows from the fact that M_S is of the form $M_S = K_S^{-1} L_S$, where $A \le K_S \le B$ and $A \le L_S \le B$.
 - (iii) \Rightarrow (iv) is obvious since the solution of LCP(M_S , q_S) also solves the system (1).
 - (iv) \Rightarrow (i): If y, z solve (1), then they satisfy the system

$$K_{S}y - L_{S}z = Se,$$

$$y \ge 0, \quad z \ge 0.$$
(2)

According to the assertion (A2) of Theorem 5.1 in [2], the existence of a solution to a system (2) for an arbitrary signature matrix S implies the nonsingularity of each matrix C satisfying $A \le C \le B$.

 $(v) \Rightarrow (i)$: Follows from the assertion (B1) of Theorem 5.1 in [2]. \square

The merit of this result is the fact that unique solvability of an infinite family of linear complementarity problems

$$LCP(M_1^{-1}M_2, q),$$

$$A \leq M_1 \leq B,$$

$$A \leq M_2 \leq B,$$

$$q \in \mathbb{R}^n,$$
(3)

can be characterized by means of a finite subset of this family (equivalence (ii) \Leftrightarrow (iii)). But even more, as the assertion (iv) shows, the existence of nonnegative solutions to a finite number of systems of linear equations of the type (1) (where the complementarity constraint is dropped) is sufficient for unique solvability of each problem in the family (3); however, the number of test problems is exponential in matrix size. Nevertheless, there exists a verifiable sufficient condition; if

$$\rho(|2I-Q(A+B)|+|Q|(B-A))<2$$

holds for some (but arbitrary) $n \times n$ matrix Q (where ρ is the spectral radius and $|\cdot|$ denotes the absolute value of a matrix), then each matrix C satisfying $A \le C \le B$ is nonsingular [3], hence each problem in the family (3) is uniquely solvable. As explained in [3], for practical verification it is recommended to choose Q as the computed value of $(\frac{1}{2}(A+B))^{-1}$. Notice also that if (3) contains a problem which is not uniquely solvable, then there exists a signature matrix S such that either K_S is singular, or $LCP(M_S, q_S)$ does not possess a solution (assertion (iii)).

Linear complementarity problems of the form $LCP(M_1^{-1}M_2, q)$, $A \le M_1 \le B$, $A \le M_2 \le B$ arise naturally in solving systems of linear equations with inexact data; see [2] for details.

References

- [1] K.G. Murty, Linear Complementarity, Linear and Nonlinear Programming (Heldermann, Berlin, 1988).
- [2] J.Rohn, "Systems of linear interval equations," *Linear Algebra and its Applications* 126 (1989) 39–78.
- [3] J. Rohn, "Positive definiteness and stability of interval matrices,", submitted to: SIAM Journal on Matrix Analysis and Applications.