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INVERSE INTERVAL MATRIX*

J. ROHN*
Dedicated to Professor U. Kulisch on the occasion of his 60th birthday.

Abstract. The inverse interval matrix is defined as the narrowest interval matrix containing the inverses
of all the matrices from a given interval matrix. Both theoretical and practical results concerning computation
of the inverse interval matrix are presented. In particular, explicit formulas are given for the inverse of an
interval matrix with radius of rank one.
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Introduction. An interval matrix is defined as a set of matrices of the form
A'=[A Al={A; A=A=A)

for some A, A satisfying A=< A. Throughout this paper we shall assume that A’ is
square n X n and regular, i.e., thateach A€ A’ is nonsingular (we follow the termmology
of [4] and [5]). Since tr1v1al examples show that the set {A™'; Ae A’} need not be an
interval matrix [4], it is reasonable to define the inverse of A as the narrowest interval
matrix containing the set {A"'; Ae A'}, i.e., as the interval matrix [ B, B] whose bounds
are given by

(0.1) By=min{(A™"),; Ac A"}
and

(0.2) By=max {(A™"),;; Ac A"}
(i,j=1,...,n).

In contrast to the problem of solving systemsof linear interval equations, the
problem of inverting interval matrices has been given much less attention. This is
explained by the fact that methods for enclosing the solution set of a system of linear
interval equations, as referenced in Alefeld and Herzberger [1] or Neumaier [4], can
be used for enclosing the inverse interval matrix by solving the family of systems
A'x=¢;, where ¢ is the jth column of the unit matrix E(j=1,..., n). As far as is
known to the author explicit results on B, B are only available for interval matrices
of a very special inverse sign pattern (cf. [5, Thm. 6.5], which generalizes previous
results by Barth and Nuding [2] and Garloff [3]).

The results of this paper are based on ideas which were briefly mentioned (but

not elaborated on) in the last remark of our paper [5, p. 76]. In § 1 we introduce a
finite set of matrices A,, € A’, where y and z are n-dimensional parameter il-vectors
and we prove that each B; (or B,J) is achieved at the ijth coefficient of some A},
§2 we show that the optimum yielding values of y and z can be specified 1f the
coefficients of A™' do not change their signs over A’, and we give some necessary
and/or sufficient conditions for thls property to hold. Finally in § 3 we give closed
form expressions for B, B,,(t j= ., n) provided the matrix A— A is of rank one.
As an application of the latter result we obtain formulae for estimating the inverse of
a real matrix by the inverse of the rounded matrix.
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We shall use the following notation. For a matrix A=(A;) we introduce its
absolute value as |A| = (|A;|) and denote its transpose by A'. The same notation applies
to vectors which are always considered one-column matrices. For a vector x € R", we
define its sign vector sgn x by (sgn x); =1if x; =0 and (sgn x); = —1 otherwise. Conv X
denotes the convex hull of X.

1. General results. Let A’ =[A, Al be an nxn interval matrix. It turns out to be
more appropriate to use instead of the matrices A and A the center matrix

A, =}A+A)
and the radius matrix
A=3(

A—
Obviously, A is nonnegative and we have A=A, —A4, A=A,+A. Let us introduce the
set of t1-vectors

A).

B

Y={yeR";|yl=1forj=1,...,n}

and for each g € R" let us denote by T, the nXn diagonal matrix defined by (T,)i = 4

and (T,);=0fori#j, i,j=1,...,n We shall characterize the inverse interval matrix
by means of matrices A,, defined by
(1.1) A,=A.—T,AT,

for y,ze Y. Clearly, for each ije{l,..., n} we have (A,.),;=(A);—ylz=
(A, —A);=A; if yz;=1, and (A,;); = (A +D); = A; if y.z;=—1; hence each A,, is a
vertex of A’ if it is considered a polyhedron in R™. However, generally the set of
matrices {A,,; y, z€ Y} does not exhaust all the vertices of A’ since there are at most
22n=1 matrices of the form (1.1) (since A_, _, = A,, for each y, ze Y) while the number
of vertices of A’ is equal to 2" in the worst case A> 0.

First we prove a general representation theorem which shows that for each Ae A’
its inverse can be expressed as a kind of convex combination of the matrices A,
y,ze Y. A similar result was given in [5, Thm. 6.1] where, instead of A;), we used
rather obscure matrices B, obtained there as solutions of certain nonlinear matrix
equations.

TueoreM 1.1. Let A' be regular. Then for each A€ A’ there exist nonnegative
diagonal matrices L,,,y, z€ Y, satisfying ¥, ..y L,. = E such that
(1.2) Al'= Y AL,

yzeY
holds.

Proof. According to [5, Thm.2.2], for each ye Y and each je{l,..., n} there
exists a z, € Y such that each solution of the linear interval system A'x = ¢; belongs
to Conv {A}} ¢; ye Y}. Hence for a given Ac A" we have

A_iej £ 2 ijA;;uej
yeyYy
for some A, = 0 satisfying ¥, . A,; =1. Now, for y, z€ Y definc a diagonal matrix L,.
by

(L,.)i=Ay, ifi=j and z=z,

(L,,);,=0 otherwise,
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then L, is a nonnegative diagonal matrix with (X,:cy Lyz)y=Xyev Ay =1 for each j,
hence ), ..y L,, = E. Thus we have

Z v A;zl L)’zej = Zy,zs Y (Lyz)jjA;zlej = Z),E Y AVIAY_Z]\ieJ = A_'ej
Y,Z€
for each j, which gives (1.2). 0
Let Ae A’ and i,je{1,..., n}. Then from (1.2) we have
(A_l)ij = Z (A;zl)ij(va)jj
v, zeY

where ).,y (L,.); = 1; hence (A"‘),-j is a convex combination of the numbers (A}, b
¥, z€ Y. This immediately implies that the bounds of the inverse interval matrix [ B, B]
given by (0.1), (0.2) satisfy

(1.3) By=min{(A,);;y,ze Y}
and
(1.4) B;=max {(A}));;y,ze Y} (i,j=1,...,n).

Hence the inverse interval matrix is completely described by a finite set of inverse
matrices A,., y, z€ Y. In the next theorem we give some property of the vectors y and
z for which the optimal value is achieved in (1.3) or (1.4).

Tueorem 1.2. Let A' be regular and i, je {1, ..., n}. Then we have:

(i) By= (A;z'),;,- Sfor some y, z € Y satisfying

P(ATHL=0  (k=1,...,n),

z,(A;) =0 (h=1,...,n),
(ii) B, =(A,)), for some y, ze Y satisfying

Yu(A )i =0 (k=1,...,n),

2 (A})y =0 (h=1,...,n).

Proof. For given i,je{l1,..., n}, B, is the minimum value of the ith coordinate
of solutions of the system of linear interval equations A'x = ¢;. Hence [5, Thm. 4.2]
applies to obtain (i). A similar reasoning for the maximum coordinate gives (ii). 0

The results of Theorem 1.2 cannot be effectively applied unless we know something
about the sign pattern of the matrices A},'. We shall study such a special case in the
next section.

2. Inverse stability. A square interval matrix A’ is called inverse stable [5] if it is
regular and satisfies |A™'| > 0 for each A€ A'. Due to the continuity of the coefficients
of the inverse matrix, this means that for each i, je {1,..., n}, either (A™"); is negative
for each Ae A, or (A™"); is positive for each Ae A'; in other words, each A~ is of
the same sign pattern. In Theorems 2.1 and 2.2 we give some conditions for inverse
stability. The first result is theoretical, but it shows that inverse stability can again be
characterized in terms of the finite set of matrices A}, y, z€ Y.

Tueorem 2.1. A’ is inverse stable if and only if all the matrices A,., y,z€ Y are
nonsingular and their inverses have all coefficients nonzero and are of the same sign pattern.

Proof. The “only if”” part is a consequence of the definition of inverse stability.
In the proof of the “if” part we must first show that A’ is regular. So let je{1,..., n}.
Let us denote by z(j) the sign vector of the jth column of A}, (which is constant over
¥, z€ Y by the assumption) and, furthermore, let

_ -1
Xy = A€




INVERSE INTERVAL MATRIX 867

for y € Y. Then we have T,(;,x,; > 0; hence A,.(;)X,; = AX,; — T,Alx,,;| = ¢;, which implies
T,(Ax,; —¢;) = Alxl
for each y€ Y. Now let Ae A'. Since |T,(A— A)x,| = Alx,|, we have T,(Ax,; —¢)=
T,(Ax,—¢)+ T,(A— A, )x,; = Alx,;| - Alx,| = 0; hence
TyAxyj = T.vej
holds for each ye Y. Then [6, Thm. 2] shows that the system
Ax=¢

has a solution. Since j was arbitrary in {1,..., n), this shows that A is nonsingular.
Now, applying Theorem 1.1, we obtain from (1.2) that A™" is of the same sign pattern
as the matrices A);, y, z€ Y, which proves that A! is inverse stable. a

In Theorem 2.2 to follow we give a verifiable sufficient condition for inverse
stability. It involves a matrix R specified only by some inequality; the result is
formulated in this way to avoid an explicit use of A;'. For practical purposes we
recommend setting R equal to the computed value of A.".

THEOREM 2.2. Suppose R is an nx n matrix such that the matrix

Gr =|E — RA.|+|R|A

satisfies
(2.1) 2Gr|R|<|R].
Then A’ is inverse stable and the sign pattern of each inverse matrix is identical with that
of R. Moreover, R is nonsingular and p(Grg) <1

Proof. Let r be an arbitrary column of |R|. Then 2Ggr < 1, where r is positive by
(2.1); hence p(Gr) <} due to a well-known result to be found, e.g., in Neumaier [4,
Cor. 3.2.3]. Moreover, (E — Gg) " exists and is nonnegative. Now, for ecach Ac A" we
can write
(2.2) RA=E —(E —RA).
Since

|E— RA|=|E — RA.+ R(A. ~ A)| = Gg,

we have p(E — RA) <3; hence RA is nonsingular, which implies that R is nonsingular
and A’ is regular. Hence from (2.2) we have

A7 :( Y. (E —RA)’) R
i—0
and consequently

(2.3) |A '~R|= ¥ |E—-RAF|R|= ¥ GkIR|=(E—Ggr)'GklR|.
j=1 =1

=
Since (2.1) implies
Gg|R|< (E —Gyp)|R|,
premultiplying this inequality by the nonnegative matrix (E — Ggr)™! yields
(E—Gg) ™' Ge|R|<IR]
which, combined with (2.3), gives
|A~ - R|<|R].
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Thus if R;>0, then A;'>0 and if R, <0, then A;' <0 (the case R; =0 cannot occur
due to (2.1)) which proves that A’ is inverse stable. 0

Now, for an inverse stable interval matrix A’ denote by y(i) the sign vector of
the ith row of A" and by z(j) the sign vector of the jth column of A;'. The introduction
of inverse stable interval matrices is then Justified by the following result, which specifies
the matrices A}, at which the exact bounds on the inverse matrix coefficients are
achieved.

THEOREM 2.3. Let A' be inverse stable. Then Jor each i,jc{1,..., n} we have

(2.4) By =(AZ0.0)
and
(2.5) By =(A;0).)i

Proof. According to Theorem 1.2 we have
—Biiz(A;zl if
for some y, ze Y satisfying
(A =0 (k=1,...,n),
z(A ) =0 (h=1,...,n).

Since A’ is inverse stable, we obtain yie=—sgn(A )y = —(y(i)); and z, = sgn(AL),; =
(z(j)nfork,h=1,..., n; hence y=-y(i) and z = z(j), which yields (2.4). In a similar
way we obtain (2.5). d

In this way we have reduced the number of inverse matrices to be computed from
221 to 2n”. In the last section we shall examine a special class of interval matrices
for which By and B, can be given by closed form formulae involving only one matrix
mnversion.

3. Interval matrices with rank one radius. In this section we shall investigate interval
matrices A’ =[A. - A, A+ A] with the radius matrix of the form

(3.1) A=gp'

for some nonnegative vectors g, p € R". Thus, with exception of the trivial cases q=0
or p=0, the matrix A is of rank one. It turns out that in this case it is possible to
obtain explicit formulae for B and B as a result of the following description of matrices
A} which shows that if A is of rank one, then A, — A_' is also of rank one for each
»zeY.

THEOREM 3.1. Let A" =[ A, —A, A+ A] be a regular interval matrix with A of the
form (3.1). Then for each y, z € Y we have

q,p;

3.2 A=A+
£ g 1-piAg,
where
4,=A'Tq
and

p-=(A")'T.p.
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Proof. Let y,ze Y. Set a =1-p.A.g,, then regularity of A' implies that a>0
[5, Thm. 5.2]. Since

T,qp'T.q,p:= q(p'T,A.'T,q)p: = (1- ) T,qp%,

we have

o, 1 . 1 o
(A~ qup,Tz)(Acl*'; qypz) = E+; qup’z_ qup’z___'a_- qu’z =E,

which proves (3.2). 0

Now, combining this result with Theorem 2.3, we obtain explicit formulae for B;
and Bj.

TupoREM 3.2. Let A be inverse stable with A of the form (3.1). Then for each
iije{l,..., n} we have

B,
) = (ADY), ——E
(3 3) Bg ( c )u 1+/\,‘i’
(3.4) B,=(A),+—2-,
T 1— Ay

where

g=A’le,  p=lAlP
and
(3.5) Ay = y(D) T (A T,z(j).
Proof. Since the assumptions of Theorems 2.3 and 3.1 are met, we obtain

(@, @)ilPp);

(3'6) Bij—'(Ac )Ij 1+Au

and

(4,0)i(P=(i))i
I_A"J ’

where A, = ply Ay =y T,(AN) T,z(j).  Since (gy)i =L (AT (Y ())ege =
Y. |A:lag = @ and, similarly, (p.;y); =Py, from (3.6), (3.7) we obtain (3.3) and
(3.4). 0

Notice that the numbers A, from (3.5) can also be described as elements of the
matrix

(3.7) B, =(A:")y+

A=ST,(A;)'T,S

where S is the sign matrix of A7 (ie, S;=1if (A7");>0and §;=-1 otherwise).

As an application of this result, consider a real (possibly not exactly known)
matrix A and the matrix A, constructed by rounding all elements of A to a fixed
number of d decimal places. Then with p=e= (1,1,...,1) and g=Be, B =1107¢ we
obtain from (3.3), (3.4) the bounds on A" in terms of A, provided the respective
interval matrix [A, — Bee', A+ Bee'] is inverse stable, which may be tested by means
of Theorem 2.2. The particular form of (3.3) and (3.4) for this special case was derived
in another way in [7, p. 10]; cf. also [8] for other methods for bounding the inverse
interval matrix.
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