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We prove that the set of optimal basic variables of a linear program remains stable under mutually independent variations of all
data within prescribed tolerances if and only if it is stable for a finite subset of explicitly described linear programs from this family.
The cardinality of this subset is exponential in the number of constraints.

linear program; uncertainty; optimal basis; stability

Introduction

In this paper we consider a family of linear
programming problems

max{c'x; Ax=b, x » 0} €))
AcAL, behl, cect 2
with A%, b! and ¢! being given by

Al={A4; A"—A<A <A+ 4},

b'={b; b*-B<b<b’+8},

c={c; e —y<egc+y},

where A%, A e R™*", b0, B e R™, ¢, y € R" and
A =0, 8>0,v >0 (componentwise ordering; i.c.,
A' is a so-called interval matrix and b!, ¢! inter-
val vectors) and m < n. This means that (1) and
(2) describe a family of LP problems of the form
(1) with all the data varying independently of
each other within some prescribed tolerances (2).
This unifying formulation covers two important
classes of problems: (a) LP problems under un-
certainty, and (b) LP problems with perturbed
data.

The problem (1), (2) can be viewed as a para-
mctric optimization problem ([1,2,4]) in which
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each entry in the data (A, b, ¢) is parametrized
independently. Tt is the purpose of this paper to
study stability of the optimal solution of (1), (2) in
the sense of the following definition (see Murty
[3] for the linear programming terminology):

Definition. Let B be an m-tuple of integers from
{1,...,n}). We call the problem (1), (2) B-stable if
each problem (1) with data satisfying (2) has a
nondegenerate basic optimal solution with basic
variables x,, j € B, and we call it strongly B-stable
if, additionally, each such an optimal solution is
unique.

It is obvious that this kind of stability is an
important issuc from a practical point of view
because it implies that the qualitative composi-
tion of the optimal solution (e.g. the choice of
foods in the famous diet problem) rcmains con-
stant regardless the actual values of the data
within given bounds. In this paper we address the
problem from a theoretical point of view. We
show in the main theorem that the problem (1),
(2) is B-stable if and only if a finite subset of
explicitly given LP problems of the form (1) with
data satisfying (2) have the required property.
Unfortunately, the cardinality of this subset is
27" hence the result is rather of theoretical
interest. Even so, the proof is not quite trivial.
This author conjectured an existence of some sort
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of a finite reduction already in 1979 while writing
the paper [5], but was unable to prove it until
recently. The impracticality of the result may be
overcome by introducing only sufficient stability
conditions, but we do not pursue this problem in
this paper.

Auxiliary results

In the proof of the main theorem we shall
cmploy three auxiliary rcsults. As two of them are
quite recent, we state them here explicitly for
convenience of the reader. We introduce the set

Y={yER"’; B =1f0rj=1,...,m}

and for each y €Y we denote by 7, the diagonal
matrix with diagonal vector y (i.e. (1}),; =y, for
each i and (T,),;=0 for i #j). Conv X denotes
the convex hull of X.

Proposition 1 ([7], Theorem 2). Let A € R™*",
b e R™ and let for each y €Y the system of linear
inequalities

T,Ax>T,b

have a solution x,. Then the system of linear
equations

Ax=b

has a solution in Conv{x,; y € Y}.

Next we have two results concerning P-matrices.
Let us recall that a square matrix is called a
P-matrix if all its principal minors are positive [3].

Proposition 2 ([6], Theorem 1.2). Let A be a
square interval matrix such that each A€A' is
nonsingular. Then A['A, is a P-matrix for each
A, A,eA.

For a given p =(p;) € R™ we definc p*=(p;"),
p ={(p7) and |p| =(|p;|), where p} =
max{p,, 0}, p; =max{—p;, 0}(i=1,...,m). Then
we have p=p*—p~, | p| =p*+ p~. The follow-
ing result is well known (Murty [3]):

Proposition 3. Let M be a P-matrix. Then the
linear complementarity problem

pT=Mp~+gq
has a unique solution for each right-hand side
vector q.
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Main result

Let B=(B,,...,B,) be an m-tuple of mutu-
ally different integers from {1,...,n}. As custom-
ary in the linear programming theory, for cach
A€ A" we denote by Ay the square submatrix of
A consisting of columns with indices B,,..., B,,,
and by A the remaining (nonbasic) part of 4. A
similar notation also applies to vectors: cp, xp,
¢y, ¥y ctc. In addition to the set Y CR™ defined
above we introduce also the set

zg={zeR";|z|=1for jEB,
zj=1forj&B,j=1,...,n},

so that Z, has 2™ elements. We extend our
notation 7, also to vcctors from Zp (in this case
it denotes an n Xn matrix). For each  y €Y,
z € Zg we dcfine the matrix

A, =A"—T,AT,,
and thc vectors

— B0
b,=b"+T,8,
c,=c"+Tyy.

Notice that for each i, j we have (A4,,),; =(A4° -
4),; if yz;=1 and (4,,),;=(A4"+4),; other-
wisc, hence each coefficient of A, is fixed either
at the lower, or at the upper bound of the respec-
tive entry, and an analogue holds for b, c¢,. Our
characterization of B-stability is formulated in
terms of these quantities:

Theorem. The problem (1), (2) is [strongly] B-sta-
ble if and only if for each y €Y, z € Z, the LP
problem

max{c;x; A,,x=b, x>0} 3)

has a [unique] nondegenerate basic optimal solu-
tion with basic variables x;, j € B.

Comment. Notice that each LP problem of the
form (3) is a ‘vertex problem’ since its data
(A, b, ¢) form a vertex of the set A!xb!xc!
(considered a rectangle in R™**™*"), Not all the
‘vertex problems’ are included, however, since
their number in the worst case 4 >0, >0,
vy >0 is 2™+ +" while there are 2°™ problems
of type (3).

k]
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Proof. The ‘only if’ part is obvious since 4, eA',
b,eb' and c,ec' forcach y €Y, 2z € Z,. In the
proof of the ‘if’ part we shall show that for each
Ae A, beb', cec' there holds: (i) A5 is non-
singular, (i) Agxz=>b has a positive solution,
(iii) the solution of the equation A% p = cp satis-
fies A% p > cy. This will prove that x (with the
basic part x, from (ii) and nonbasic part zero) is
a nondegenerate basic optimal solution of (1)
with basis index set B (p is then the dual optimal
solution). Thus we are confined to prove ()—(iii).

(i) Let yeYand z=(1, 1,...,1)' € Zg. Since
(3) has a nondcgenerate basic optimal solution
with basic variables x;, j € B, we have that the
system

(Aw)nx=by 4

has a positive solution x, € R™. Rcarranging (4),
we see that x, satisfies

T,(AYx,—b%) = A,x, +B.

Now Ict 4€A4! and beb’. Since |T,(A,—
APx, | <Agx, and [T (6" —b)| < B, we obtain

T,(Apx,—b)= Tv(AE"’x)’ - bn)
+ T),(AB —AY)x, + T,(b°—b)
zApx,+B—Apx,—B=0,
hence
T,Apx,>T,b (%)

holds for each y €Y, which in view of Proposi-
tion 1 means that Azx=>» has a solution for
each A €A', b eb'. Now consider two cases: (a)
If B>0, then b' contains m linearly indepen-
dent vectors, therefore A, is nonsingular. (b) If
B; =0 for some i, take a perturbed vector B’ =g
+ (e, &,...,¢)" where £>0 is chosen so that
each of the finitely many systems

(A,,), x=b,+T,(e,¢,...,¢)" (4"

preserve a positive solution (this is possible due
to nonsingularity of (A,.); and nondegeneracy).
Since B’ >0, the previous argumcnt applies to
prove again that A is nonsingular.

(ii) As we have seen in (i), the inequality (5)
holds for each A =A%, beb! and y €Y, hence
according to Proposition 1 the unique solution of
the equation Agxy=b belongs to Conv(x ; y €
Y} and therefore is positive since each x, is
positive.

YZ)B

OPERATIONS RESEARCH LETTERS

February 1993

(iii) To prove the last assertion, we shall first
show that for each z €Y the nonlinear equation

t
T.((A%) p—c3) =A% pl+vs (6)
has a unique solution. In fact, using p=p*—p~
and | p|=p*+p~, (6) can be equivalently rear-
ranged to the form

pr=(43) - 4] 71[(,4?3)‘ + 1,85 p

f[(ay) -Tay] (S O

which is a linear complementarity problem whose
matrix is a P-matrix duec to Proposition 2 since
both the matrices (A%)' — T, A% and (A%)' + T, A%
belong to the interval matrix {A4%; 4 € A"} whose
elements are all nonsingular according to (i).
Hence Proposition 3 gives that (7), and thus also
(6), has a unique solution p,. Now, let 4 €A"
and ¢ € ¢'. We shall first prove that

Alez 2z cN (8)
holds for each z €Y. To this end, for a given
zeY definea y €Y as follows: y,=1if(p,), >0
and y,= —1 otherwise (i=1,...,m).Then |p,|
=T, p, and substituting into (6) we obtain

t
(A% - T,AgT,) p,=cp+ Typ,
which can be written as

t
(Ayz*)sz = (Cz*)B’
where the vector z* € Z, is defined by z5 =z
and z%=(1,1,...,1)" Then the complementary
slackness condition of linear programming gives
that p, is the unique dual optimal solution to the
problem (3) for y, z*, hence
t
(sz*)szZ(Cz*)N (9)
holds and since [(4y—AY)'p, | <4A%|p,|, we
have
t t
‘sz = (A?\/) 12 + (AN _AUN) p,
t
>(AY) p. — Ay p,|
t t
- (Ao, TyA)sz=(Ayz*)sz>(cz*)N
=3 Cg; + ’)’N? Cns

which proves (8). Now, let p be the solution to
A% p = cp (which is unique due to (i)). In a similar
way as in the part (i) we can prove from (6) that

TzAthz > Tch
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holds for each z €Y, hence Proposition 1 gives

that p=2%,_yA,p, for some real numbers A, €

[0, 1], z €Y, satisfying X, _ A, = 1, thus from (8)

we finally obtain

Ath= Z /\zAthzz Z AZCN=CN7 (10)
zeY z€Y

which concludes the proof of part (iii).

If, moreover, each problem (3) has a unique
optimal solution, then the inequality (9), and con-
sequently also (8) and (10), hold sharply which
means that each problem (1) under (2) has a
unique nondegenerate basic optimal solution,
hence the problem (1), (2) is strongly B-stable.
O
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