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Checking Robust Nonsingularity is NP-Hard*

Svatopluk Poljakt and Jifi Rohn¥

Abstract. 'We consider the following problem: given k + 1 square matrices with
rational entries, Ay, Ay, ..., A, decide if Ay + ryA; + --- + A, is nonsingular for
all possible choices of real numbers ry, ..., r in the interval [0, 1]. We show that
this question, which is closely rclated to the robust stability problem, is NP-hard.
The proof relics on the new concept of radius of nonsingularity of a square matrix
and on the relationship between computing this radius and a graph-theoretic
problem.

Key words. Robustness, NP-complete problems, Robust nonsingularity, Interval
matrices.

1. Introduction

It is natural to require that a control system performs satisfactorily even under
unknown variations of system parameters in a specified range, i.e., that it is robust.
The most important performance issue, namely robust stability, has been extensively
studied recently; we refer to the survey paper by Mansour [M] for a detailed list of
references.

In this paper we are concerned with the problem of robust nonsingularity. To be
more precise, for any two given n x n matrices 4 and A, with A nonnegative, we
introduce the radius of nonsingularity d(A, A) as the minimum ¢ > 0 for which there
exists a singular matrix A4’ satisfying A —¢A < A’ < A + ¢A. The concept of the
radius of nonsingularity is seemingly closely related to Doyle’s “structured singular
value” introduced in [D2] as a tool for the analysis of feedback systems with
structured uncertainties, but we do not pursue this connection in this paper. The
concept may also prove useful in the sensitivity analysis of linear systems [D1].

We now summarize the main results. The key result (Theorem 2.1) gives an
explicit formula for d(4, A). In order to show that computing d(A4, A) is NP-hard,
we consider the special case of A = J (the matrix whose all entries are ones) and we
show in Theorem 2.2 that

d(A, J) = m;

* Date received: July 3, 1990. Date revised: May 7, 1992.
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where r(B) is defined by
r(B) = max{z'By|z, ye {—1, 1}"}

(z* denotes the transpose of z). Since r is a matrix norm, we first give some upper
and lowcr bounds on it. Then, by establishing a connection between r and the
maximum cut in an associated graph, we show that computing r(B) is NP-hard for
matrices B with rational entries. As a consequence of the above result we show that
the problem of testing singularity of interval matrices is NP-complete. We recall
that an interval matrix A" = {4'|A — A < A’ < A + A} is called singular if it con-
tains a singular matrix; i.e., A’ is singular if and only if d(4, A) < 1.

Some Notation

We work with square matrices of size n x n with real entries. We denote by 0 = @,
the n-dimensional discrete cube Q = {—1, 1}", and by e the vector e = (1, ..., 1)".
Foreach y € Q, we denote by T, the diagonal matrix with the vector y as its diagonal
(ie, (T,); = y: and (T;); = 0 for i # j). For an arbitrary n x n matrix 4 we denote

po(A4) = max{|4|| Ax = ix for some x # 0, A real},

i.e., an analogue of the spectral radius, with maximum being taken only over real
eigenvalues; we set p,(4) = 0if no real eigenvalue exists. We use the following matrix
norms: p(A4) = ./ po(A'A) (the spectral norm) and s(4) = Y ; j|al.

2. Radius of Nonsingularity

For an n x n matrix 4 and a nonnegative n x n matrix A, we define the radius of
nonsingularity by

d(A, A) = min{e > 0|4 — ¢eA < A’ < A + ¢A for some singular A'}.

Obviously, d(A4, A) = 0 if and only if 4 is singular. On the other hand, it can
sometimes be infinite. As an example, consider the matrices

(o) 2=l o)

Here each A’ with A — eA < A’ < A + €A satisfies det A’ = — 1, hence d(4, A) is
infinite.

Since the case of A4 singular is trivial, we assume A to be nonsingular in what
follows. In this case, using the notation introduced in the previous section, we derive
the following explicit formula for d(4, A) (we employ the convention § = oo):

Theorem 2.1. Let A be nonsingular and A = 0. Then we have

1
WD) = k(oA T,ATIy, 7€ O X
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Proof. First consider the case of d(4, A) finite. For a given ¢ > 0, the existence of
a singular matrix A’ satisfying A — eéA < A’ < A + €A is equivalent to singularity
of the interval matrix [A — ¢A, A + eA], which, according to assertion (C3) of
Theorem 5.1 in [R], is the case if and only if
Po(A T T,eAT,) > 1
holds for some y, z € 0, i.e, if and only if
e-max{po(A'T,AT)ly,ze Q} > 1.

Hence the minimum value of ¢ is given by (1).

If d(A, A) = oo, then by the same result in [R] we have ¢ po(4 ' T,AT,) < 1 for
each y, z € Q and each & > 0, hence po(4 ' T,AT,) = Ofor each y, z € Q and (1) again
holds. [ ]

We show that computing d(A, A) for a given instance 4 and A is NP-hard. For
this purpose, we consider the special case A = J = ee', and we write d(A) instead of
d(A, J). We have the following result.

Theorem 2.2. Let A be nonsingular. Then

|

d(A) = rm,

)
where r(A™') = max{z'A7y|z, y € Q}.
Proof. ForA = ee',wehave A'T,AT, = A7 yz'for each y, z € Q. If 1 is a nonzero
real eigenvalue of A1yz!, then from

A yz'x = Ax

we have z'x # 0. Premultiplying this equation by z' and dividing by z'x gives
A =z'A"'y. Thus py(A~'yz') = |z'A~y|. Then Theorem 2.1 gives d(4) = 1/r(47"),
where

rA™") = max{|z'471y||z, y € Q} = max{z'47'y|z, y € Q}. [ |

The mapping
A r(A) = max{z'4y|z, y € @}

is obviously a matrix norm (i.e., r(4) > 0, r(4) = O if and only if A = 0, (4 + B) <
r(A) + r(B) and r(44) = |4|r(4)). Let us note that r(A) has been studied by Brown
and Spencer [BS] (see also [ES]) for the case that 4 is a + 1-matrix. They proved

\/i"m < min{r(d)la,; = £1} < (1 + o()n*? 3

(i.e., the minimum over all + 1-matrices 4). We show in Theorem 2.4 that the lower
bound remains valid for any matrix 4 with s(4) = n?. Since r(4) is a matrix norm,
we have ¢, N(A4) < r(4) < ¢, N(4) for any other norm N(A), where ¢, and c, are
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some constants depending on n only. We present explicit values of such constants
for the norms p(A) and s(4). Furthermore, we show that computing the exact value
of r(A) can be reduced to the max-cut problem in a weighted graph, and, conversely,
max-cut can be reduced to computing r(A4). The former reduction provides us with
a possibility of computing some bounds on r(A4) from approximate solutions of
max-cut, and the latter implics that computing r(A) is NP-hard.

The next theorem gives a relation between the norms r and p. The proof is
straightforward and is omitted.

Theorem 2.3. For every n x n matrix A we have
p(A4) < r(4) < np(A)

and
r(A) 2 AV n}“min(A'A)'
In the next theorem we cbmpare r(A) with the norm s(A).

Theorem 24. We have
2
\/—;-n_”zs(A) < r(4) < s(A).

Proof. Itis well known (see, e.g., the proof of Theorem 15.2 of [ES], or [ PRS]) that

E[le'y|] = «/2n/n for random y e Q. Clearly, E[|z'y||y € Q] = E[|e'y||y € Q] for
any fixed z € Q. Let a = (a4, ..., a,) be a nonnegative vector. Define vectors a =
@, @iags ooy @py @y, ... a;4), i=1, ..., n, ie, each a¥ is obtained by a cyclic
rotation of a. Set a = Y I, a;. We have, for a random y € Q,
1
E[ly'al]=-

. 1 [a .
— EU?¢W]=—E[ZIf¢W]
ni=1 n i=1
1

n X 2
> _E t () =EE Wls [Sp12q
T n [i;ya ] n [Ieyl]__\/;n x

Hence, for arbitrary a € R" (not necessarily nonnegative) we have

E[|y'a|]] = cn 12,

where ¢ = ,/2/n and, with A, denoting the ith row of 4,
E[z |Aiy|} = 3 ELlAT 2 3, en™*? 3 lay| = en”5(4),
hence there exists a y € Q such that
24y = 3 || > on”Ps(a),

where z is the sign vector of Ay.
The proof of the upper bound is trivial. n
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Let us note that the original purely probabilistic proof of the lower bound of (3)
from [BS] can be modified to an algorithmic one. Thus, for a given + l-matrix
A, we can construct (in polynomial time) a pair y, ze Q of vectors such that
z'Ay > cn®? where ¢ is the above constant.

In the rest of this section we study a relation between r(A4) and the max-cut
problem. Again, such a relation is not quite new since the max-cut problem has
already been used for reformulation of quadratic optimization problems of type
x'Ax + c'x; see, e.g., [B].

The Max-Cut Problem. Let G = (N, E) be a graph and let c: E — R be a weight
function on edges. The maximum cut mc(G)in the graph G with respect to c is defined
as

mc¢(G) = max ¢(4S),
ScN

where 85 is the set of edges with one endvertex in S and the other one in N\ S, and
c(F)=Y scrc(f) for asubset F < E.

In order to reduce computing r(A) to the max-cut problem, we define the bipartite
graph B, of a matrix A as the weighted bipartite graph B, = (Y U Z) where Y and
Z are two copies of {1, ..., n} and E = {ij|a; # 0}. The weight of an edge ij is a;;.
Theorem 2.5. We have r(A) = 2mc(B,) — e'Ae.

Proof. Given y, z € Q, define the set
S={ieY|y=1}u{jeZiz= -1}

We have
YAz =Y agyz;= Y ay— Y, ay=2 ), a;— ), a;=2c(05) — e'Ae,
i yi=z; Yi#2z; Yi=2%;5 L
and taking the maximum on both sides gives the result. ]

The max-cut problem is a known NP-hard problem (see [GJ]). Since it is difficult
to find an exact solution, we may use some heuristics. We next survey some of them.

Lower Bounds on Max-Cut.
(i) [PT]1If G = (N, E) is a weighted connected graph, then
mc(G) > 4 + the minimum weight of a spanning tree.

A cut 85 satisfying the above inequality can be found in O(n*) time.
(ii) Lieberherr and Specker have implicitly shown in [LS] the bound
n
G)>c(E)yz—/.
me(G) > e(B)5——
It is easy to establish the above bound by a probabilistic method. The merit
of [LS] is a polynomial-time algorithm achieving it.
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Upper Bounds on Max-Cut. An upper bound on max-cut was given by Mohar and
Poljak [MP]:

n
<-1
ME(G) < A

where A, is the maximum eigenvalue of the Laplacian matrix L = (I;) given by
—Cyj if jeE, i#],
;=40 if G¢E i#]j
Yeew if i=j

Futher improvement of the eigenvalue bound on the max-cut problem is given
by Delorme and Poljak [DP]. Another way to obtain some bounds on the max-cut
is via an associated system of linear inequalities; see [DL] for a survey.

We have shown that computing r(4) can be reduced to the max-cut. Now we
present an opposite reduction, in order to establish that computing r(A4) is NP-hard.
We recall that the cardinality version of the max-cut, i.e., when all the weights ¢ are
0 or 1, is already NP-hard (see problem GT25, p. 196, of [GJ]). The cardinality
version is sometimes called the maximum bipartite subgraph problem.

Theorem 2.6. Computing r(A) is NP-hard for a matrix A with rational entries.

Proof. Let G = (N, E) be a graph. Define a matrix 4 by
—1  if jeE, i#]j
a; =<0 if je¢E, i+#}j,
M if i=j,
where M is a sufficiently large integer (M > 2|E| is sufficient). Let r(4) = z'Ay for

some z, y € Q. It is easy to see that z = y because of the choice of M. Foreach y € Q,
with § = {i|y; = 1}, we have

yiAy = Z ayyiV; = Z (—za)((y: — =2
i iJ
= —12, a4y — y;)* + ), ay = Mn + 4|55| - 2| E|,
7 L.J

hence r(A) = Mn + 4mc(G) — 2|E|. Thus, an existence of a polynomial-time algo-
rithm to compute r(A) would yield a polynomial-time algorithm to compute mc(G).
Since the latter is an NP-hard problem, computing r(A4) is NP-hard as well. B

An immediate corollary is the statement formulated in the abstract.

Corollary 2.7. The following problem is N P-hard.

Instance: k + 1 square matrices having rational entries, Ay, A, ..., A;.
Question: I's the matrix Ay + ry A, + -+ + r A, nonsingular for all possible choices
of real numbersry, ..., r, in the interval [0, 1]?
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Proof. We show that the problem of computing the radius of nonsingularity can
be reduced to it. Assume that we want to decide whether the radius of nonsingularity
of a given (rational) matrix A4 is at least a given £ > 0. Then consider 4, = 4,
k = 2n?, and definc the matrix A; whose ijth entry is ¢ and all other entries O,

and Aj; = — A, for i, j =1, ..., n. Clearly, the radius of nonsingularity of 4 is
at least ¢ if and only if the problem formulated in the corollary has a positive
answer. ]

Let us remark that the problem formulated in Corollary 2.7 is algorithmically
decidable by the work of Tarski [T]. However, we do not know whether or not the
problem belongs to the class NP (though we conjecture that the answer is yes). The
difficulty arises from the fact that A, + r; A, + - + r, A, may be singular only for
(ry, ..., ) irrational, as shown in the following example. Let k = 1, and

10 -1
S U

Then det(d, +tA,) =1t?+ 3t + 1, and A, + t4, is singular if and only if ¢ =
(-3 +./9)/2

Thus, the singularity of A, +r; 4, + - + r, A, cannot be certified by a direct
check for concrete values of (r,, ..., 7). The method used by Tarski is indirect, based
on the Sturm theorem and its generalizations for more variables. However, his
certification requires creating a huge family of auxiliary polynomials, and hence it
is not polynomial-time bounded in the size of the input data.

Finally, we show that a related problem of singularity of interval matrices is
NP-complete. In contrast to Corollary 2.7, we are able to establish the membership
in the class NP. A square interval matrix A’ = {A'|4 < A’ < A} is called singular
if it contains a singular matrix. Consider the decision problem:

Instance: Square interval matrix A’, where both A and A are rational matrices.
Question: Is A! singular?

Theorem 2.8. The recognition problem of singularity of interval matrices is NP-
complete.

Proof. Ttiseasy to see that computing r(4) can be reduced to the problem whether
an interval matrix is singular, and hence the problem is NP-hard. It remains to show
that it belongs to the class NP, the class of nondeterministic-polynomial-time
problems. We claim that if an interval matrix A" = {A'|A < A" < A} is singular,
then there exists a singular matrix 4’ in the interval such that all the entries of A’
are rational numbers whose sizes are bounded by a polynomial in the sizes of the
entries of A and A4. Such a matrix 4’ can be “guessed” (i.e., generated by a non-
deterministic algorithm), and then it can be checked deterministically in polynomial
time that A’ is singular, since Gaussian elimination is known to be polynomial time
not only in the number of arithmetic operations, but also that the sizes of the
numbers that occur during the elimination remain polynomially bounded. (A de-
tailed analysis can be found in [S].) This gives the required nondeterministic-
polynomial-time algorithm.
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The validity of the claim follows from a result of the second author (see part C7
of Theorem 5.1 of [R]), who proved that if A’ is singular, then there exists a singular
matrix A = (4;;) € A" with the following property: there is a pair (k, m) of subscripts
such that, for every (i, j) # (k, m), entry A;; satisfies either 4;; = A;; or A; A
However, since A is singular, the cxcept10nal entry A, can be expressed as a linear
combination of subdeterminants of 4 using the Laplace expansion. Hence the size
of all entries of A is bounded by a polynomial in the sizes of entries of A and A. This
proves the claim. ]

3. Concluding Comments

We conclude by mentioning two possible applications of the radius of non-
singularity.

Data uncertainty. Assume that we have obtained entries of a matrix A = (a;) as a
result of an experiment where the data were measured by a device ensuring some
(uniform) precision 8. This means that it is guaranteed that the (unknown) actual
value is in the interval [a; — d, a; + 6] Now, we have to decide whether A4 is
suitable for further numerical processing, or whether the experiment should be
repeated with better precision, which may be more costly. Our decision will depend
on whether 6 > d(A4) (a new experimenl is necessary) or § < d(A) (the data are
sufficiently precise).

Rounding in fixed-point arithmetic. Assume that a matrix A with possibly irratio-
nal entries is given. Such a situation may occur when the data are derived formally,
eg., \/5 may arise as a distance. If we intend to apply a numerical algorithm, we
have to round off each entry to some number p of decimal digits. Let 4 denote the
matrix of rounded entries, called a representation matrix. If |4 — A| > d(4), this
indicates a potentially dangerous situation, since the presence of a singular matrix
within the precision of 4 may mean that A does not reflect well the properties of A.

Acknowledgment. The authors thank two anonymous referees for valuable com-
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