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Abstract — Zusammenfassung

A Step Size Rule for Unconstrained Optimization. We describe a step size rule for unconstrained
optimization. The rule is proved to be finite and to perform the exact line search in one iteration in case
of a strictly convex quadratic function.
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Ein Schrittweitenalgorithmus fiir unrestringierte Optimierung. Wir beschreiben einen Schrittweiten-
algorithmus fiir Losung unrestringierter Optimierungsprobleme, der im Falle einer streng konvexen
quadratischen Funktion dic cxakte Schrittweite in einer Iteration liefert.

Gradient methods for solving an unconstrained optimization problem
min{ f(x); x € R"}

as the steepest descent method or the methods by Fletcher-Reeves, Polak-Ribiére,
Davidon-Fletcher-Powell or Broyden-Fletcher-Goldfarb-Shanno described e.g. in
Fletcher [1], Luenberger [2] or Polak [3], construct a sequence of iterations {x;}
according to the following general scheme (which we call the “main algorithm” to
distinguish it from its specifications; we denote g; = Ff(x;), the gradient of f at x;):

Main algorithm.

Step 0. Select an x, € R" and seti:= 0.

Step 1. If g; = 0, terminate: x; is a stationary point of f.

Step 2. Otherwise find a search direction d; such that dfg; < 0.
Step 3. Find a nonnegative real number «; satisfying

fx; + a;d;) = min{ f(x; + ad;); o > 0.
Step 4. Set x;,, :=x; + a;d;, i ;=i + 1 and go to Step 1.

The methods listed above differ from each other only in the choice of the search
direction d; in Step 2. The computation of the step size «; required in Step 3 cannot
be performed exactly in a finite number of steps in gencral case and therefore must
be replaced by some inexact line search procedure in practice; several such standard
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procedures are described in [1], [2], [3]. The purpose of this note is to propose
another step size rule which runs as follows:

Step Size Rule (to replace Step 3 of the main algorithm).
Step 3.1. Set fi:=1andj:=0.
Step 3.2. Compute y; = f(x; + fd,) — f(x)) — Bd[ g..
Step 3.3. If y; £ 0, set o; := fB; and go to Step 4.

2

Step 3.4. Otherwise compute f;,, = —%dT g:.
i
Step 3.5. Ifi < 2, set @; := f§; and go to Step 4.

Jt+1

Step 3.6. Otherwise set j :=j + 1 and go to Step 3.2.

For each i, let us denote by j; the index j for which «; := f;is set in Step 3.3 or Step
3.5. The basic properties of the rule are summed up in the following theorem:

Theorem 1. Let f € C. Then the step size rule is finite and the main algorithm using
this rule generates a sequence of points satisfying

Sxi1) — f(x) < wd!g; 1)
if the rule stopped in Step 3.3 and
of
wdi gy < f(xp41) — flx;) = (“t ) )diTgi 2
Bi+1

if it stopped in Step 3.5. In particular, the sequence { f(x,)} is strictly decreasing.
Moreover, if f is a strictly convex quadratic function, then the line search 3.1-3.6 is
exact and o; = B, for each i.

Proof. First assume to the contrary that the rule does not terminate for some i, so
that it constructs an infinite sequence { §;}12 . Then from Steps 3.4 and 3.6 we obtain
that

0 < By <36

holds for each j, implying f; — 0. From Steps 3.2 and 3.4 we have

2
Y = f0 + Bid) — f(x;) — Bidl g = *2[[:] dlg;,
1
hence
- B \r
S + Bjdi) — flx) = ; — d; g 3
241
which gives
Jxi + Bidi) — J(xi) ( B; )
={1-2]dlg
B 26) 7
for each j. Since the left-hand side tends to d] g; as j approaches infinity, we obtain
lim b =0,

j—~o Pj+1
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but this is a contradiction since —i > 2 for each j in view of Step 3.6. Hence
j+1
the rule is finite and «; := f; is set for some j;. If it stopped in Step 3.3, then we have

(1), and if it termmated in Step 3.5, then (2) holds because of (3) and the fact that
> 0 in Step 3.5, both (1) and (2) imply

y;, > 0.Since dfg; < 0,0, > 0 and o; — 2

di+1
S(xi1) < f(x;), hence the sequence { f(x;)} is strictly decreasing. Finally, let f be of
the form

fx)=3xTCx +bTx +a
where C is a symmetric positive definite matrix. Then for each real f we have
- Sl + Bdy) = f(x)) + pdf g, + $B*d[ Cd,,
hence
y, =3P?dTCd; > 0
for each j and consequently in Step 3.4 we obtain

_ diT.‘h
drcd;’

Bj+1 =

which is independent of j and obviously equal to the exact minimizer of f(x; + fd;)
over the nonnegative half-ray. Hence 8, = B;,so thata, := f; issetin Step 3.5. W

Next we have this convergence theorem:

Theorem 2. Let f € C! and let the sequence generated by the main algorithm using
the step size rule have the property X;., — X; — 0. Then each accumulation point
(x,-d,) of the sequence {(x;,d;)} satisfies

dyvf(x,) =0. @

Proof. Assume to the contrary that dIPf(x,) #0. Let x; > x,, d;-d, along
some subsequence K < {0,1,2,...} which may be chosen so that {&;}, ., converges
tosome a. If o > O, then from a;d; = x;,, — x; » 0 we obtain d,, = 0, hence (4) holds.
Thus assume that o = 0. Then j; > 1 from some i on and from Step 3.4 we have

ﬂl
oy = i = 2,; drgl
Ji—

Here o, 50, {¥j,-1}x is bounded and {dg;}x has a nonzero limit, hence §;,_, 5o
Now, Theorem 1 gives

S+ wdy) — f(x;) <0,
but from Step 3.6 we have

fexi + By—ydi) — flx;) = (.8],.—1 = ﬂzj'ﬁ )d >0,

which together gives
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fOxi+ ogd) — f(x) =0
for some «; € [&;, f;,—1] and by the mean-value theorem we have
dVf(x; + £d) =0

for some ¢&; € [0,a;]. Since &; £ 0 because of Bi—1 % 0, taking the limit we obtain
dIvf(x,) = 0 contrary to the assumption. This concludes the proof.

For the steepest descent method, where d, = —g, is set for each i, we immediately
obtain from (4) that dIPf(x,) = —IFf(x,)|5 = 0, hence x, is a stationary point.
Convergence properties of some other methods endowed with this step size rule are
given in [4]. A limited computational experience shows that the rule performs best
when implemented into the DFP or BFGS method.
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