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INTERVAL MATRICES: SINGULARITY AND REAL EIGENVALUES*

JIRI ROHNY}

Abstract. This paper proves that a singular interval matrix contains a singular matrix of a very special
form. This result is applied to study the rcal part L of the spectrum of an interval matrix. Under the assumption
of sign stability of cigenvectors this paper gives a complete description of L by means of spectra of a finite subset
of matrices and formulates a stability criterion for interval matrices with real eigenvalues that requires checking
only two matrices for stability.
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1. Introduction. Let A. and A be real n X n matrices with A nonnegative. The set
of matrices

[Ae—= A, A, + A== {A; A, ~ A< A< A, + A}

is called an interval matrix and is said to be singular if it contains a singular matrix. The
problem of singularity of interval matrices is studied in [6], where in Theorcm 5.1 a
number of necessary and sufficient singularity conditions are given.

The purpose of the present paper is two-fold. First, we prove in Theorem 2.2 that
a singular interval matrix [4, — A, 4. + A] contains a singular matrix A of a very special
form

(0) A=A4,—dT, AT,,

where d € [0, 1] and T, T, are diagonal matrices whose vectors of diagonal entries are
the sign vectors of some singular vectors x and p of 4 and A4', respectively. Second, in
§ 3 we use this theorem to study the properties of the set L of real eigenvalues of all
matrices contained in a given interval matrix. We prove that each A € L is an eigenvaluc
of some matrix of the form (0) (Theorem 3.2). Moreover, if A € dL, then d = 1 (Theorem
3.4); hence each boundary point of L is achieved at some vertex of [4, — A, A, + A]
(considered a polyhedron in R”z). To obtain more specific results, we introduce three
assumptions imposing sign stability restrictions on eigenvectors under which we give in
Theorem 3.7 a complete description of the set L as a union of at most » compact intervals
whose endpoints are cigenvalues of some explicitly expressed matrices. All the results
are formulated for the real part of the spectrum only, since the complex case seemingly
cannot be handled by the methods used.

Stability of interval matrices has been recently extensively studied in robust control
theory; see the state-of-the-art papers by Mansour [4] and Barmish [1] for detailed in-
formation. The description of the set L in Theorem 3.7 here implies a simple stability
criterion in the case when only real eigenvalues are present: under the three assumptions
made, an interval matrix is stable if and only if two explicitly given matrices are stable
(Theorem 3.8).

We shall use the following notation. The absolute-value vector of a vector x = (x;)
is defined by | x| = (| x;|). We introduce the set

Y={yeR"y==+lforj=1,...,n},
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and for each y € Y we denote by T, the n X n diagonal matrix with diagonal vector y.
Inequalities, such as A = 0 or A > 0, are to be understood componentwise. A" denotes
the transpose of 4.

2. Singular interval matrices. Thcorem 2.2 below establishes the main result of this
paper; all subsequent theorems are consequences of it. It will be preceded by an auxiliary
characterization of singular interval matrices.

LEMMA 2.1. A square interval matrix [A. — A, A, + A} is singular if and only if it
satisfies

| dex| = Al x|

for some nonzero vector x.

Proof. The assertion is an immediate consequence of the theorem by Oettli and
Prager [5] that charactcrizes solutions of systems of linear interval equations (in our
case, with zero right-hand sides); we use it here in the form given, e.g., in [6, Thm.
2.1]. ]

Now we have the following main result.

THEOREM 2.2. Let [A. — A, A+ Al be a singular interval matrix. Then there exist
x#0,p#0,andy, z€ Y such that

(1) (A. — dT,AT.)x = 0,

(2) (4, — dT,AT,)'p = 0,

(3) T.x 20,

and

(4) T,pz0

hold, where

(5) d = min {e = 0; [A, — ¢A, A. + eA] is singular }
andde[0, 1].

Comment. Notice that (3) and (4) mean that z;x; 2 0, p;jy; Z 0 holdforj =1, .. .,
. Hence if all entries of x and p are nonzero, then z and y are uniquely determined and
their entries are simply the signs of the respective entries of x and p. Also notice that (3)
and (4) imply T.x = | x| and T,p = | p|.

Proof. First observe that (1)-(4) hold trivially if 4, is singular. In this case d=0;
hence it suffices to take some nonzero vectors X, p that satisfy A.x = 0, A.p = 0 and
choose z and y as the sign vectors of x and p; then (1)-(4) hold.

Let A, be nonsingular, so that d > 0. Since the interval matrix [4. — dA, A, + dA]
is singular, according to the assertion (C1) of [6, Thm. 5.1], there exist y, z € Y such
that det (4, — dT,AT,) -det A, = 0. Then the continuous function ¢ of one real variable
@(7) = det (4. — 7dT,AT) satisfies ¢(0)e(1) = 0; hence ¢(70) = 0 for some 79 €
[0, 1]. In view of (5) it must be 7od Z d; hence 7o = 1, so that 4, — dT, AT, is singular
and (1) holds for some x # 0. To prove the assertions (2)-(4), we shall distinguish two
cases; (a) A>0Oand(b) A = 0.

(a) Let A> 0.

(i) To prove (3), assume to the contrary that neither 7;x Z Onor 7.x =0 holds,
so that there exist j, k € {1, ..., n} such that z;x; < 0 and z;x; > 0. Take an arbitrary
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ie{l,...,n}. Then one of the numbers YizZX;, VizeXx 1s positive and the other is
negative, which gives

[(Acx)i| = d < d(Alx|);

2 Dinyizaxy,
A

since i was arbitrary, it follows that | 4.x| < dA|x|. Then we can choose a positive &
such that ¢ < d and | A.x| < eA|x|; hence the interval matrix [4, — €A, A, + €A] is
singular according to Lemma 2.1, which contradicts (5). This contradiction shows that
either 7,x 2 0 or 7,x = 0 holds. In the former case we are done, and in the latter it is
sufficient to set x := —x to obtain (1) and (3).

(ii) To prove (2) and (4), we first notice that since 4, — dT,AT, is singular, there
exists a nonzero vector p such that

(A(’ - dT,VATz)tp = (Ai - dTZAlTJ’)p = O

Assume that neither T,p = O nor T,p < 0 holds. Arguing as in (i), we obtain that
| Aepl < dA'| pl, which again gives that the interval matrix [AL — eA?, AL + eA'] is
singular for some ¢ < d; hence so is [4. — ¢A, 4, + ¢A], which is a contradiction. Hence
either 7,p 2 0 or T,p < 0, so that by setting p := —p if necessary we get that (2) and
(4) hold also. This concludes the proof for the case of A > 0.

(b) Let A be a nonnegative matrix. Let H denote the matrix of all ones and for
k=1,2,...definc Ay = A + (1/k)H; then A, > 0 and each [4, — A, A, + Ay] is
singular. Hence from what has been proved under (a), it follows that for each k therc
exist vectors x, px (which can be normalized so that || x|, = [ pell, = 1), and z, yy €
Y such that

(1) (Ae = T, AT ) xi = 0,

(29 (Ae = Ty, ATL) pr = 0,

(39 Tox; = 0,

(49 Typez 0,

where

(59 di = min {e 2 0; [A, — eAy, A, + eAy] is singular } .

First we show that d;, £ d,, £ dfork =1,2,....In fact, from A, = A, = At

follows that [A, — di 1Ak 41, Ac + div1Bk11] < [Ae — dios 1 Ok, Ae + dic 1 Ac], and
[Ac—dA, A+ dA] < A, ~ dAy 1, Ao+ d Ay 1], which implics that both the interval
matrices [A. — di Ak, Ac + di+ 1Akl and [A. — dAr 1\, A. + dAc ] are singular;
hence dy = di 4+, and di.; = d in view of (5'). Next, since Y is finite, there exists a
constant subsequence of the sequence {(zx, i)} ¥, i€, zx = z, ¥ = ¥ for infinitely
many k. Let us choose another subsequence of this subsequence along which x;, py
converge to some x, p (this is possible since { x, }, { px } are confined to the compact unit
sphere; hence x # 0 and p # 0). Then taking limits in (1)—(4') we obtain

(4. — dT,AT;)x = 0,
(4. — dT,AT,)'p = 0,
T.x=0,

T,p 20,
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where d = limy ..., di < d. Since the matrix A, — d1;, A1, is singular and belongs to the
interval matrix [4. — dA, A, + dA], we have in light of (5) that d < d; hence d = d €
{0, 1], so that (1)-(4) hold and the proof is compilctc. O

Next, we formulate some direct consequences of Theorem 2.2. First, we show that
there exists a singular matrix in a “normal form.”

COROLLARY 2.3. Let [A, — A, A. + A] be singular. Then it contains a singular
matrix of the form

(6) A, — dT,AT,,

where y, z€ Y and d € [0, 1].

Proof. This is an obvious consequence of the assertions (1) and (5) of Theo-
rem 2.2, O

The result can also be given the following geometric formulation.

COROLLARY 2.4. Let [A, — A, A, + A] be singular. Then it contains a singular
matrix belonging to a segment connecting A. with some vertex of [A. — A, Ac + 4]
(considered a polyhedron in R™).

Proof. For the singular matrix A4 from (6) we have

A=(1 —d)A, t d(A, — T,AT,),

where d € [0, 1]; hence 4 belongs to the segment connecting A, with the matrix 4, —
T,AT., which is a vertex of [4, — &, 4. + Al since (4, — T,AT,); = (4. — Ay ifyz; =
l and (A, — T,AT.); = (4, + A);if y;z; = —1. O

COROLLARY 2.5. Let[A, — A, A. + A) be singular. Then there exists an x # 0 such
that

| A.x| = dA]| x|

holds, where d is given by (5).

Comment. The assertion is stronger than that of Lemma 2.1; it shows that the
inequality holds “uniformly.”

Proof. From (1) and (3) we have | 4.x| = |dT,AT x| =d|A|x|| =dA|x|. O

3. Real eigenvalues of an interval matrix. In this section we shall apply Theorem
2.2 to study the set of real eigenvalues of an interval matrix [A4, — A, A + A] given by

L={NeR';Ax = Axforsome A €[4, — A, A, + A], x # 0}.

Obviously, L is compact since each X € L can be written as A = x'Ax for some 4 €
[4. — A, A, + A] and somc x with [[x[2 = 1. In the sequel we shall use the following
result.

LEMMA 3.1. X € L if and only if the interval mairix

(7) [(A. = M) — A, (A, — N) + 4]

is singular.

Proof. 1\ € L, then (4 — \)x = 0 for some x # 0, where 4 — M belongs to the
interval matrix (7), which is then singular. Conversely, if (7) is singular, then it contains
a matrix 4 with Ax = 0, x # 0. Then 4 + N/ € [4. — A, A, + Al and (4 + A)x = Ax;
hence A € L. O

We shall first show that each A € L is an cigenvalue of a matrix of a special form.
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THEOREM 3.2. Let \ € L. Then there exist x + 0, p # 0, y,‘z €Y, andde€[0, 1]
such that

(8a) (A, — dT,AT,)x = Ax,
(8b) (A, — dT,AT,)'p = Np,
(8c) T.x=0,
(8d) T,pz0.

Proof. The assertion is a direct consequence of Theorem 2.2 applied according to
Lemma 3.1 to the interval matrix (7). 0
Let us introduce, as in [6], the matrices

Ay = A, — T,AT,

for y, z€ Y. Obviously, A,, € [A. — A, A. + A] foreach y, z € Y.

COROLLARY 3.3. Let N € L. Then \ is an eigenvalue of a matrix belonging to a
segment connecting A; with some matrix Ay, for y, z€ Y.

Proof. The proof follows from Theorem 3.2. 0O

Hence all the real eigenvalues of [4, — A, 4, + A} are achieved at matrices belonging
to a finite number of segments, i.e., (0 a set of measure zero if #n > 1; sce Hollot and
Bartlett [3] for a similar result using the edges of [4. — A, A, + A].

Now we shall show that the boundary points of L are eigenvalues of the matri-

- A%ﬁEOREM 3.4. Let N € dL. Then there exist x # 0, p # 0, and v, z € Y such that
(9a) Ay x = AX,

(9b) Ayp = A,

(9c¢) T.xz 0,

(9d) T,pz0.

Proof. As in the proof of Theorem 2.2, we shall consider separately two cases: (a)
A>0and(b)A=0.

(a) Let A > 0. Since L is compact, we have dL < L; hence (8a)-(8d) hold for
some x # 0, p# 0, y, z€ Yand d € [0, 1]. We shall prove that d = 1. Assume to the
contrary that d < 1. Then from Theorem 3.2 we have

[(A. — ADx| = dA| x| < Al x].
Hence there exists an e > 0 such that each X' € (A — ¢, \ + ¢) satisfies
[(A. — NDx| < Al x].

Therefore, [(4. — N'T) — A, (4. — N'T) + A] is singular according to Lemma 2.1. This
implies ' € L by Lemma 3.1. Hence A is an interior point of L, which contradicts the
assumption that A € L. Thus d = 1, so that (8a)—(8d) take on the form of (9a)~(9d).

(b) Let A = 0. As in the second part of the proof of Theorem 2.2, fork =1, 2, . ..
define Ay, = A+ (1/k)H, where H is the matrix of all oncs, and let L, be the set of real
eigenvalues of the interval matrix [A4,. — Ay, 4. + A.], so that L L,. Foreachk =1,
2, ...take a A, € L, that satisfics

A — Al =min {|A — \|; X e dl,}.
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We shall prove that A, = \. Assume this is not the case; then there exists an ¢ > 0 and
a subsequence { l{:j} such that [ Ay, — A| Zeforj=1,2,..., whichin view of the definition
of Ay, gives that (A — ¢, A + ¢) = L, for each j. Hence for each X' € (A — ¢, X + ¢) and
eachj =1, 2, ... there exists a matrix Ay € [A, — 8y, Ac + Ay] <[4, — Ay, Ac + A(]
and a vector x;, with || x; [l = 1 such that 4,x, = X'x;. Taking the limit, we obtain
Aoxo = Nxp for some Ag € [A. — A, A, + A] and xy # 0. Hence N € L. This gives (A — ¢,
XA + &) = L, contrary to A € L. Hence A, — A. Now, since A¢ € dL; and Ay > 0, by
applying the result proved in part (a) we obtain that for each k = 1, 2, . . . there exist
Yk, Zx € Y and vectors xg, pi with || xll2 = | pll2 = 1 such that

(A; — T AT ) Xk = A,

(A — Ty, AT Pre = N,
T, xcz 0,
Type =0

hold. Choosing a subsequence along which yj, z, remain constant and xi, px converge,
we obtain (9a)-(9d), which completes the proof. O

Theorems 3.2 and 3.4 were quite general; 1o achieve more specific results about the
structure of L, we now introduce some assumptions.

Assumption 1. Each A € [4, — A, A, + A] has exactly m real eigenvalues (1 =
m = n) numbered in such a way that A (A4) < -+ < X, (A).

Then we can define the sets

Li = {N(A); A€[A: — A, A+ A]}

fori=1,..., m.

Assumption2. L, N L; = @ foreachi#j,i,j€{l,..., m} (where the bar denotes
closure).

Next we shall assume a sign pattern constancy of the eigenvectors.

Assumption 3. Forcachie {1,..., m} there exist vectors z;, ; € Y such that each
right eigenvector x (left eigenvector p) pertaining to the ith real eigenvalue of some 4 €
[A. — A, A, + A] satisfies either 7, x > 0or T, x <0(7,p>0or T,,p < 0).

We formulate the third assumption in this way because —x and — p are also a right
eigenvector and left eigenvector, respectively. Notice that —z; and —y; also possess the
required property.

COROLLARY 3.5. Let Assumptions 1-3 be satisfied, and let i € {1, ..., m}. Then
each \ € L; is the ith real eigenvalue of some matrix belonging to the segment connecting
Ay with Ay, -

Proof. According to Theorem 3.2 there exist x, p, v, z, and d satisfying (8a)—(8d).
Hence A is an eigenvalue of the matrix 4 = A, — dT,AT,. If A = \{(A) for some j # i,
then A € L; N L;, which contradicts Assumption 2. Hence A = \;(A4), which, according
to Assumption 3 in conjunction with (8c) and (8d), means that z = +z, and y = £y;.
Hence either

A=A, —dT AT, = (1 + d)A,,, + 3(1 —d)A_,,.,
or
A= A(- - dT—y,-ATZ,- = i(l - d)A,V,‘Z,' + %(l + d)A",VnZi

with d € [0, 1]. In both cases A belongs to the segment connecting 4, with 4 .. O
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An interval matrix [4, — A, A, + A] is called symmetric if both 4, and A are
symmetric. In this case, if 4 € [4, — A, A, + A], then A" €[4, — A, A, + A] also, but
generally [A4, — A, A, + A] can contain nonsymmetric matrices. However, we have the
following result.

COROLLARY 3.6. Let a symmetric interval matrix [A, — A, A, + A] satisfy As-
sumptions 1-3. Then each X € L is an eigenvalue of some symmetric matrix in [A, — A,
A+ A

Proof. Since each left eigenvector of A, is also a right eigenvector in this casc, it
follows from Assumption 3 that y; = +z, fori=1,..., m.If A€ L, then \ € L; for
some / and Corollary 3.5 implies that X is an eigenvalue of a matrix of the form 4, —
dT. AT, for d € [—1, 1], which is obviously symmetric. O

Now we are ready to describe the structure of L. The following theorem is a gen-
eralization of [7, Thm. 3], where a similar result is proved for interval matriccs with A
of rank one, i.e., of the form A = gp' for some positive vectors q and p, whereas now A
can be an arbitrary nonnegative matrix; see also Deif [2].

THEOREM 3.7. Let an interval matrix [A, — A, A, + A) satisfy Assumptions 1-3.
Then

L= ICJI L;,
where for each i€ {1,..., m} we have
(10) L =[N, N1
with
(11) A= min (N (Ayz, ), N4y )
and
(12) A= max {N(Ayz), M(Ay, ) )

Comment. L is thus completely determined by the real components of the spectra
of 2m matrices A, , Ay, (i=1,..., m).

Proof. The assertion for L is simply a consequence of the definition of the L;’s;
therefore, we need to prove only (10)-(12). These are obvious if A = 0. Assume A #
O,andletie{l,...,m},Ae€dL;. Then A € L, or else Assumption 2 would be violated.
Hence, according to Theorem 3.4, X is an cigenvalue of some Ay, and in view of As-
sumption 2, A = X;(A4,.). From (9¢) and (9d) we can infer, as in the proof of Corollary
3.5, that cither A = )\; or A = X;, where we have denoted M o= N(A4-,,;,) and A=
Ai(4y,z). Hence I; has at most two boundary points. Furthermore, let x and p be a right
eigenvector and a left eigenvector to ), and A,, respectively, such that 7, x = | x| > 0
and 7,p = | p| > 0. Then we have

(A + T, AT )x = \ix
and
(d: = T,AT.)'p = Aip.
Premultiplying the first equation by p’ and the second by x' and subtracting, we obtain
21pl'Alx] = (N = X)p'x.
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Since | p| > 0, | x| = 0, and A # 0, this shows that \; # ;. In a similar manner we can
obtain ); # \;(4,) and X; # X\;(4.). To sum up, we have proved that the compact set
L, consists of at least three different points and has at most two boundary points ); and
Ai: hence L; is a compact interval whose endpoints arc thc two boundary points, i.e.,

L = [\, Xf],
where
A = min { A, A}
and
N = max { M\, A} O

Notice that if the interval matrix is symmetric, then the extremal eigenvalues A;,
X; are achieved at symmetric matrices 4., and 4 ., (i=1,..., m).

The above result has an implication for stability of interval matrices with real ei-
genvalues. A square matrix is called stable [4] if all its eigenvalues are placed in the open
left half of the complex plane. An interval matrix [A, — A, A, + A] is called stable if
each 4 € [4, — A, A. + A] is stable. We have the following characterization.

THEOREM 3.8. Let an interval matrix [A, — A, A, + A satisfy Assumptions 1-3
with m = n. Then it is stable if and only if A, . and A, . are stable.

Proof. Since m = n, all the eigenvalues are real. Therefore, for cach A € [4. — A,
A.+ Aland each i€ {1, ..., n} we have

Ni(A) < M\(A) £ N, = max { M (Ay,2), M( Ay, 2) < 0.
Hence 4 is stable. The “only if ” part is obvious. O

4. Real eigenvectors of an interval matrix. In this section we give a characterization
of real eigenvectors of matrices belonging to a given interval matrix. In contrast to the
eigenvalue case, the situation is much simpler here because it turns out that real eigen-
vectors can be characterized by a verifiable necessary and sufficient condition.

THEOREM 4.1. A nonzero real vector x is an eigenvector of some matrix in [A, —
A, A, + A) if and only if the matrix

X=lx|-|x|"

satisfies
(13) (T,AT, — A)X = X(T, AT, + A),
where the vector z is given by z; = | if x; Z 0 and z; = —1 otherwise (j=1,...,n).

Proof. For the sake of brevity, let us denote 4. = T.4.7.. Then (13) becomes
(14) (A4; — A)X = X(4.+ ).

“Only if ”: Let x be a real eigenvector of a matrix 4 € [4, — A, 4, + A], so that
Ax = Ax for some real X. Since T,x = | x| by the definition of z, we have

(4, — AD|x|| = [Acx — Ax] = [(4. — A)x| = Alx],
which implies that

(15) (A, = A)| x| £ N x| £(4; + )] x].
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Premultiplying the left-hand inequality by | x|’, we obtain
(4, — A)X = \X,

and then, transposing the right-hand inequality in (15) and premultiplying the result by
| x|, we have

AX = X(A4, + A,

which together give (14).
“If: Conversely, let x be a nonzero real vector such that the matrix X = | x| - | x|’
satisfics (14). Then for each i, je {1, ..., n} we have

(16) ((A4: = D) xDil x| = | X 1((A; + A)| x]),.
Hence for each i, j with x; # 0, x; # 0 it holds that

((Az_ A)lxl)l S((AZ+ A)le)j
[ x; 1 N ’le

and, consequently,

3¢ # 0 | x; | X0 | x|
Hence there exists a A satisfying

((4: — M| x]), <) < mig A=t A)le)j‘

(17)
X#0 | x; ] X #0 IXJI

We shall show that (), x) is an eigenpair of some matrix in [4, — A, A, + A]. Let k €
{1,....n}.1f x; # 0, then (17) gives

((Az— A)le)k§ A< ((Az+ A)lxl)k
[ Xk | Xk
Hence
(18) ((Az = D) x| e = M|
and
(19) Al = ((A4: + A)| x

hold. If x; = 0, select an m with x,, # 0. Then from the inequality (16) applied to i =
k,j = m we obtain (18), and similarly applying it to / = m, j =k, we get (19). Hence
(18) and (19) are valid for each k, which gives that

[(4e = NDx| = [(A: = M) x|| = Al x].

Then Lemmas 2.1 and 3.1 imply the existence of a matrix 4 € [4, — A, A. + A] such
that (4 — A)x = 0. Hence A € L, and x is an cigenvector of 4. O
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