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where

o 1 1 -k
' yi- |k, |2 -k 1)
Comparing (10) and (A.2) we can see that the ith column of the
factor Y in (15) can be easily calculated from the array in the

form
yi=y1l- |§i|2 8;.

A major simplification occurs when £ = 0. In this case, the
second step of the recursion (A.2b) disappears and the recursion
consists of only two steps: 1) a multiplication of the array from
the left by the matrix ®, and ii) a multiplication from the right
of one of the columns by the matrix 7*. A similar result holds
for the case ¢ = — 1.
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Stability of Interval Matrices: The Real Eigenvalue
Case

Jiri Rohn

Abstract-—Hollot and Bartlett showed that testing at most 27" certain
matrices for stability is sufficient for verifying stability of an n X n
interval matrix with real eigenvalues. We prove that this upper bound
can be reduced to 22" ~! and consider a special case where testing only
two matrices is needed.

1. INTRODUCTION
Let A and A be real n X n matrices, 4 <A. The set of

matrices [4, A] = {A4; A < A < A}, tcrmed an interval matrix,
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is said to be stable if each 4 € [4, A] is stable, i.e., has all its
eigenvalues in the open left-half of the complex plane.

The problem of stability of interval matrices has been recently
extensively studied due to its applications in control theory, ¢.g.,
cf, [2] and the references contained therein. In this note, we
shall be concerned with a special case of interval matrices
[A, A] such that each A € [4, A] has only real eigenvalues.
Under this assumption we shall delineate a finite family of
matrices in [ 4, A) such that this interval matrix is stable if and
only if each matrix in the family is stable. This result is based on
some characterization of singular interval matrices given in [3].

Let us introduce the set

L ={AreR';det(A — Al) =0forsome A € [4, A}
where det, as usual, denotes the determinant and 7 is the unit
matrix. Further, let

A = maxA.
L

Then, under our assumption that all the eigenvalues are real, we
have that [A4, Al is stable if and only if A < 0; this, of course, is
still a mere rcformulation of the definition.
Hollot and Bartlett proved in [1, corollary 2] that A is an
eigenvalue of some matrix A of the form
Ay e{dn &) Gj=10m) €]
hence, the stability of [A4, A with real eigenvalues is equivalent
to the stability of all matrices of type (1). In the worst (but quite
possible) case of A < A (componentwise) there ate altogether
27" mutually different matrices of the form (1). We shall show
that this upper bound can be essentially rcduced (remaining,
nevertheless, an exponential one) by considering a certain subset

of matrices of type (1). To this end, denote
Y={yeR"y=tlforj=1;",n}
and for each y, z € Y define a matrix A, by
(Ayz)jj = ﬁij if Yizj = 1
(A,),=4; ifyz=-1
(i,j = 1,+-,n). Obviously, each A, is of the form (1) and
belongs to [A, A} It can be casily seen that in the worst case
A < A there are exactly 2*" ' mutually different matrices A,
since the cardinality of Y is 2" and A_, _, =A,, for each
y, z € Y. First, we have this result.
Theorem 1: Let A € R'. Then A € L if and only if ‘
det (A,, — Al)det (4, — M) <0 2)
holds for some y,z,y',z' €Y.
Proof: A €L if and only if det(A4 — A1) = 0 for some
A4 € [A, A] which is the case if and only if the interval matrix
[A — Al, A — Al contains a singular matrix; the latter fact is
cquivalent to (2) in view of the assertion (C1) of [3, theorem
5.11. u]
Now we can prove the main result.
Theorem 2: Let [4, A] have only real ecigenvalues. Then
[4, A] is stable if and only if each matrix A,,,y,z € Y, is
stable.
Proof- The “only if” part is obvious. To prove the “if” part,
first notice that A € L, hence, it satisfies
det (A,, — Al )det(A4,, — i) <0 3
for some y, z,y', z' € Y according to Theorem 1. Assume to the
contrary that the left-hand side in (3) is strictly negative. Then in
view of the continuity of the determinant there exists a positive €
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such that cach A € (A — €, A + €) satisfies (2) and therefore
belongs to L, which gives that A is an interior point of L
contrary to its definition as A = max, A, Hence, the left-hand
side in (3) is zero, which means that A is an eigenvalue of either
A, or Ay, in both the cases A < 0 in view of the stability of
theqe matrices. Hence, [ 4, A] is stable. 0O

In this way, we have reduced the upper bound on the number
of matrices to be tested for stability from 27 to 2271, This, of
course, is still exponential in n. Nevertheless, we shall delineate
a class of interval matrices for which only two matrices of type
A,, are to be tested for stability. Thls class is specified by the
followmg four properties.

Al) Bach A €[4, A] has n real eigenvalues numbered in
such a way that A (A4) < A,(4) < -+ < A (A).

A2) A,_(A) < A(A) for each 4', A €[4, 4]

A3) There are y, z € Y such that for each A € [A4, A] there
exists an eigenvector x and a left eigenvector p, both pertaining
to A, (A), with z,x; > 0, y;p; > Ofor i = 1, n

A4) A — A is a positive matrix of rank one.

In view of A2), each A,(A) is simple and, therefore, both its
eigenspace and its left eigenspace are one-dimensional. There-
fore, A3) states that the sign pattern of any eigenvector pertain-
ing to an nth eigenvalue is described by z or —z; similarly by y
or —y for the left eigenvector.

Theorem 3: Let [A, A] be an intcrval matrix satisfying A1),
A2), A3), A4). Then [A, A] is stable if and only if both the
matrices A,, and A_, , are stable.

Comment: In contrast to Theorem 2, here y and 2z are fixed
vectors prescribed in the assumption A3).

Proof: Under the assumptions stated it was shown in [4,
proof of theorem 3] that A = max{A,(4);, A €[4, A} =
max{A,(4,,), A,(A _, )} Hence, if A, and 4_, , are stable,
then A,(4,,) <0,A(A4_, ) < 0 and thus A < 0, so that [ A4, /T]
is stable. The converse statement is obvious.
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Global Tunability of One-Dimensional SISO
Systems

F. M. Pait and A. S. Morse

Abstract—1t is shown by example that with a suitably defined certainty
equivalence controller X, it is possible to make a closed-loop parame-
terized system 2 tunable on its entire parameter space &, even though
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% may contain points at which the parameterized model % , upon which
3 ’s definition is based, is not stabilizable. The implications of this
discovery are briefly discussed.

I. INTRODUCTION

One way to think of a parameter adaptive control system is as
the feedback interconnection of a process %p and a parameter-
ized controller X.(k) whose parameter vector k is adjusted by a
tuner X, [1]. From this point of view, a parameterized controller
is a dynamical system depending on k, whose inputs are the
process open-loop control u, the process output y, and possibly
a reference input r; 3's outputs invariably include not only a
control signal u. which in closed-loop serves as the feedback
control u to the process, but also a suitably defined “tuning
error” e; which during adaptation drives Z;. 3 typically con-
sists of two subsystems, one an “identifier” X.,(k) whose primary
function is to generate an “identification error” e, and the other
an “internal regulator” X ,(k) whose output is uc; in this case
er is usually the same as e;. % is often chosen in accordance

" with the certainty equivalence principle: this is done by defining

3.&’s coefficient matrices as functions of k so that at each point
p in the parameter space & in which k takes values, the
closed-loop system 3, (p) consisting of 3g(p) in feedback with
3,’s design model 2 ,( p) is internally stable (ct., [1]). As is well
known, the difficulty with this approach is that & usually con-
tains points at which 2, cannot be stabilized; this of course
means that an internally stabilizing certainty equivalence control
of this type cannot be defined on any subset of & containing
such points. The purpose of this note is to expand on a recently
proposed idca [3], which has promise for dealing with this
problem.

To explain what we have in mind, we shall appeal to the
concept of tunability, a property of the closed-loop system %(k)
consisting of 3, in feedback with Z-(k). % is said to be unable
on a nonempty subset & C.& if for cach p € &, Z’s state x goes
to zero as ¢ — o along cach trajectory on which k(z) = p and ey
together with any exogenous inputs to X {e.g., r} equal zero. It
can be shown quite easily for the case in which 3(k) is a linear
system whose coefficient matrices are “locally bounded” func-
tions! of k, that if 3’s exogenous inputs are bounded, if % is
tunable on #, and if e, can be kcpt within finite bounds by
slowly tuning k, then 3’s state x will remain bounded as well.
The reason why this is important here, is that ; and 3z can
often be designed so that X has these properties. In particular, it
is possible to define 3. so that 3, is tunable on £, even though
£ may contain points at which X, is not stabilizable! This will
be demonstrated in the sequcl for the case when 3, is a
one-dimensional, SISO, linear system.

II. FORMULATION

The problem of interest is to construct an adaptive stabilizer
for a SISO process %, with input u and output y, which is
modeled by a one-dimensional linear system of the form
)
where a and b are unknown constants. We assume throughout
that || is bounded below by a known positive number b*; that is

|b] > b*. 2)

y=ay + bu

L A function is locally bounded if it is bounded on each bounded subset
of its domain.
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