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We present a finite algorithm for finding a singular matrix in a given intcrval matrix. We
show that if started properly, it yields a singular matrix of a special form. The algorithm is
however not general since it may fail.
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The problem we are concerned with here is the following. Given an interval
matrix A'=[A4,4A]={A;A< A< A} where A, A are real nxn matrices
with 4 < A, find a singular matrix A€ A" provided it exists. This problem is by
no means trivial since it was proved in [2] that the decision problem

Instance: An interval matrix A’ with rational entries,
Question: Does A’ contain a singular matrix?

is NP-complete (1.€. very unlikely to be solvable in a polynomial number of
operations; cf. Garey and Johnson [1] for a survey of NP-completeness). In our
paper [3, p. 69] we proposed an algorithm for solving the above decision problem.
The algorithm presented in this paper is an elaborated version of the previous one,
being improved in three respects: (1) it may be started from an arbitrary Ae 4/, (2) it
no longer requires matrix inversion at each iteration since an updating procedure
has been built in, and (3) if successful, it not only states the existence of a singular
matrix, but also gives an explicit singular matrix of a special form. However, it may
still fail, i.e. unable to continue even if a singular matrix in A’ exists; nevertheless,
our computational experience is rather encouraging. The algorithm keeps and
updates three nxn matrices A, B and C, of which it will later be proved that
C=A4"", and runs as follows (for the sake of brevity, we denote by Ayjy Ay, A the
kjth coefficient, the kth row and the kth column of a matrix A, respectively):
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Algorithm
Step 0. Select an AeA".
Step 1. If A is singular, terminate.
Step 2. Otherwise set C:=A" 1,
Step 3. Define B by
B=A4;if C; 20
B,=A,if C; <0 (i,j=1,...,n)
Step 4. Compute
f=min (BC);=(BC)y.
Step 5. If B=1, terminate. The algorithm fails; a singular matrix has not been
found.
Step 6. 1f Be(0,1), set
C:=C—-C,(B—4),C
A, =B,
and go to Step 3.
Step 7. If <0, determine

m=min{i; Y BCpt Y. AijijO},
/B '

IETES

set

Ay =By(j=1,....,m—1)

IR
n

m—1
A 1=~ ( .Zl BCu + ZHAijjk) /Cone
i~

J=m

and terminate: A is a singular matrix in A%

Before justifying the algorithm, we shall show that C= A4 ~! always holds in Steps 3
and 4. This is obviously so during the first pass of the algorithm through these
steps. Thus, assume by induction C=A4"1! to hold and let C’, A" be the updated
matrices at the end of Step 6. With e, being the kth column of the unit matrix, we
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> have

A'=A+e(B—A).

C'=f4‘1—%A_lf?k(B—A)k,A_l=(z‘1+ek(B—A)k.)_‘=(A')_1

in view of the Sherman—Morrison formula for inverting a rank one update since
B=(BA™ Y, =1+(B— A), A 'e,; thus C'=(4')"1. Also AcA! implies A’ A’.

Now we prove that f§ always satisfies f < 1, so that Steps S to 7 exhaust all the
possibilities. In fact, from the construction of the matrix B in Step 3, for each i,j we
have B,J < Ay 1f A;'>0 and B,J >4, if A‘1<O, in both the cases
=<1

Next we shall show that the matrix A", obtained at the end of Step 7 by

updating a matrix A, is singular.. First, since Z B;Ci=B <0, we see that m is
=)
well-defined and satisfies

m—1 n
Z Bkjcjk+Akmka + Z Akjcjk>0
j=1 j=m+1

m—1 n
Zl B Cix+ BimCon + ZH A,;Cy <0,
=

J=m

hence C,, #0 and for thc number

m—1 n
- <,~Zl By, Cy + '_ZHA,CJ-C,-,,)/C,,,,‘,

we obtain by substituting into the previous inequalities that (4,,,—«)C,,;>0 and
(Bim — @) Cpi < 0 hold, hence « belongs to the interval with endpoints A,, and B,
which shows that ae[ Ay, Ayn]. Now it can be easily seen that the matrix A" is
formed from A4 by

A"=A+eb—A,),

where b=(Byy,.... By m-1,% Ag ms1s-.-» Asn), hence A”eA’ and since bC ;=0 in
view of the definition of «, we have (E is the unit matrix)

det A" =dot(E+e,(b—A4,)C) det A=(1+(b—A4,)C,) det 4
=(bC,) det A=0,
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hence A” is singular,
It remains to be demonstrated that the algorithm is finite.

Theorem 1. For an arbitrary starting matrix A°cA4” in Step 0, the algorithm after
a finite number of iterations either yields a singular matrix in A, or fails.

Proof. Since we already know that the matrix constructed in Step 7 is singular, we
are left to prove that the algorithm cannot cycle infinitely in the loop between Step
3 and Step 6.

First, we show that the set of A’s appearing during the algorithm is finite since
each such a matrix satisfies

A€ {Al(c)j"_4kj3 "Tkj}

(k,j=1,...,n). In fact this holds obviously at the outset; as soon as k has been
chosen for the first time in Step 4, the updating in Step 6 enforces A,;€ { 4, 4} to
hold and this property is being maintained in the subsequent steps.

Second, we show that no A4 can reappear in the course of the algorithm since the
sequence of |det A| is strictly decreasing. Let 4 and A’ be a current matrix and its
update, respectively. Then, we have A'=A+e, (B— A), =(E+¢,(B— A), A~ ')A for
the respective k and B. Since E + ¢, (B — A4), A~ ! differs only in the kth row from the
unit matrix E, we have

det(E+e(B—A4), A~ 1): 1+(B—A4)A~ l)kk=(BA_ l)kk=ﬁs

hence det 4'=pf det A and since fe(0,1) in Step 6, we conclude that |det A'| < |det A|.
The two properties stated imply the finiteness of the algorithm. il
The formula det 4’=f det A justifies the choice of k in Step 4 aimed at incuring
the steepest descent of the value of |det A|.
In [3] we proved (Theorem 5.1, assertion (C7)) that if A’ contains a singular
matrix at all, then it also contains a singular matrix of a special form

A;;e{ Ay, Ay} for each (i,f) #(k,m)

= *)
Akm S [/_4km5 Akm]

for some (k,m) (a singular matrix of the form A;;e{A4,;, A4;;} for each i,j need not
exist; cf. the interval matrix [ —E, E] which contains the zero matrix but each
matrix of the latter form satisfies |det 4|=1). We shall show that our algorithm, if
properly started and if it does not fail, finds a singular matrix in this form:

Theorem 2. Let the starting matrix A° in Step 0 satisfy 4%e{ 4;;, 4;;} for each i,j.
Then the algorithm, provided it does not fail, constructs a singular matrix in the
form (*).

=,
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t Proof. From the definition of B in Step 3 and from the updating formula in Step
6, it follows that the property

A€ { Aij, Ay} for each i,j

is maintained throughout the algorithm and can be only violated during the
construction of A,,, in Step 7. Therefore, the final singular matrix has the form (¥).
U

According to our computational experience, the algorithm is rather effective,
usually finding a singular matrix in a relatively small number of iterations. We
ascribe this behavior to the steepest-descent-type technique built into the Step 4. In
cases when a special form of the resulting singular matrix is not required, we
recommend initiating the algorithm with the matrix A°=1(A4+ A); this will
sometimes help to prevent the algorithm from failing at the early stages.

Example. Consider the interval matrix A'=[ 4, A] with

0 1 ~ 4 1
A= A= .
4=(1 o) A=(0 4)
If started from A, the algorithm fails immediately. If initiated with A°=14(4 + A), it
constructs in one iteration the singular matrix

Final remark. We have given a theoretical description of the algorithm. If it is to
be implemented in a finite-precision arithmetic, care is to be taken for the fact that
the relation C=A4 " will generally be violated and therefore the arguments based
on it may not remain in force.
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