A_Step_Size Rule_for Ungomstrainmed Optimization

J. Rohnl

Ahg;;ggﬁ; We propdse an Armijo~type step sige rule for solving
differentiable unconstrained optimization prodblems, based on a
gquadratic approximation, The rule is proved to be finite and to
perform the exact line search in one iteration in case of a strict~
ly convex quadratic function. We give convergence results for the
steepest déscent and for the FR, PR and DFP methods using this
rule, Computational evidence shows that the rule performs best
when implemented into the DFP or BFGS method.
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1. Introduction

Gradient methods for solving an unconstrained optimization

problem

minimize f£(x)

subjeet to xe¢ R? ’
as e.g. the steepest descent (SD) method or the methods by Fletcher-
-Reeves (FR), Polak-Ribiére (PR), Davidon-Fletcher-Powell (DFP) or
Broyden-Fletcher-Goldfarb-Shanno (BFGS), described in standard text-
books like Luenberger (1], Fletchexr (2] or Polak (3], comstruct a
sequence. of iterations {xi} according to this general scheme (which
we call the ?’main algorithm’?’ to distinguish it from its concrete
specifications; we demote gy = Vf(xi) s the gradient of f at xi)’
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Malp_glgorithm,

Step 0, Seleet an x & R” and set 1:=0.
Step 1. If g4 = O, terminate: x, is a stationary point of f.
gtep_2. Otherwise find a search direction d; such that d?.gi < 0.
§§gp_3,_ Find a real number o, satisfying

£(xg + obgdy) = min {£(xy + oddy); b2 0}.
Step_ 4. Set xy 4:= Xy + of 444, 1 1= 1 + 1 and go to Step 1.

The methods listed above differ from each other only in the choice

of the search direction dy in Step 2 (to be described later in Sec-
tion 3) o All of them share the common descent property of the main
algorithm, neamely that f(xi+1) < f(xi) for each i. The procedure of
minimizing the function of one real variable r(\x1 + ol di) over the
nonnegative half-ray is called the line search, and the value ol 1

the step size, In the form stated the main algorithm remains, however,
only of conceptual value since generally the exact minimum in Step 3
cannot be found in a finite number of iterations; therefore in practi-
cal computations the exact line search in Step 3 must be substituted
by some finite procedure (a so-called inexact line search) yielding
satlsfactory approximate results. Among many optiohs discussed in

(11, (21, (3], we shall focus our attention here on the step sige
rule proposed by Armijo (4], using a preselected parameter /ﬂé (0,1):

§§gn_3.&,_ Set 061 $m I@ k, where k is the minimum positive integer
satisfying
£(x, + £ ¥a,) - £(x,) < 0.58%a%
1+ 79 P < 0.507d8; .

In view of the choice of di made in Step 2, it 1is easy to see that:
(a8) such a k exists, and (b) the sequence generated by the main algo-

rithm using this rule satisfies £0xy,) < £(x;) for each i, hence
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the descent property is not violated.

In this paper we shall propose another rule, which is in certain
sense similar to that of Armijo’s, but based on quadratic considera-
tions. In section 2 we formmlate the rule and prove that it is finite
and maintains the descent property; moreover, if f is a strictly con-
vex quadratic fumetion, then the line search is exact and the minimi-
zing value is always found in one iteration., In section 3 we state
a general convergence result (Theorem 3.1) which is then applied to
establish convergence properties of the SD, FR, PR and DFP methods
using this rule., Computational experience shows that the rule performs
well, especially when implemented into the DFP or BFGS method.

2..The zule

We shall first give an informal description of the basic idea.
Assume at the i-th iteration of the main algorithm we have an appro-
ximation (Sj> 0 (j =0,1,...) Of the exact step size. Assuming f to
be at least twice continuously differentiable, let us replace the
function f (x1 + [!di) of one real variable ,8 by its truncated Tay-
loxr series

B(xg + A 4y) 2 2(x) + Pagg, + 0.5 A2a3H,a, Q)
where H, = (sz(xj)/’axj% xk)j ,?..1 is the Hessian matrix at x,.
It 1s obvious that the right-hand side quadratic function achieves
its minimum (if it exists) at the point

B = -(d38y) /(a3 Q). (2)

To avoid the necessity of evaluating Hi’ let us express the denomina-
tor in (2) from the formula (1) applied to the previously computed
approximation /i it

agH 8y ¢ (27 R3)(e(xy + Rydp) - £Gy) - Riafg). (3
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Hence, using (2) and (3), we may construct the next approximation by
2.7 - T
Bya1 = 0.5 AJa3E (2(xy + Bydy) - £(xy) = Lydiey)  (4)
Now observe that this equation implies
2 .
2(xg + Ryd9) - £(xg) = (By - 0.58F/ fy)aie. (D
Thus, if
- 2
Ry =058y B> O e
then f(xy + f{jdi) - £(x;) € 0, so that we may terminate the proce-
dure and set oly 3= {3 j* which will enforce the descent property

£(xy,5) < £(xy) §))
to hold. Since /63 > 0, we may simplify (6) to

By By < 2

In the opposite case

By B> 2

we have ﬂj+1> 0 and setting j:=j+l, we may repeat the whole process,

Finally, if the denominator in (4) 1s zero, then we have
2(xg + fydy) - 2(xy) = ﬁjdﬁgi< 0, (8)
80 that we can set obi 1= ﬁj' Summing up, the line search procedure

runs as follows:

Step_Size Bule 2.1 (to replace Step 3 of the main algorithm).

Step_3.1. Set ,8-0 := 1 and j := O,
Step_3.2. Compute 'y = £(xg + f,4,) - £(xy) - ,Rjd{gi .
Step 3.3, If 3”3 = 0, set ofy := ﬁj and go to Step 4.
§tep_dsd. Otherwise compute §,, = 0. 5(6 §/ 4 j)digi .
Step 3a3. It ﬁj/,gj-;l £2, set oy := £, and go to Step 4.
Step_3.6. Otherwise (i.e. if B,/@, ;> 2) set j := j+1 and
g0 to Step 3.2.
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It follows from Step 3.6 that if the rule does not stop with /33,

then the newly constructed iteration satisfies

0 </@3+1$°-5,45 . 9)
We shall now prove that o&i is reached after a finite number of iter-

ations:

Proposition 2,1, Let £€Cl. Then the step size rule 2.1 is finite
and the main algorithm using this rule generates a sequence of points
satisfying

f(xi-l-»]) < f(x:l)

for each 1.

Progf, Assume to the contrary that the rule never terminates for
some i, so that it comstructs a sequence of numbers { /33} tending
to zero in view of (9), Hence from (5) we have

(£Gy + f4a9) - 2G) /By = (1 =058,/ R,y Ddlsy
for each j. Since the left-hand side temds to dfgi as } approaches
infinity, we obtain

2 Ry g =0
But this is a contradiction since FJ/F j+12 2 for each j due to
Step 3.6. Hence the rule is finite. The fact that the objective
strictly decreases has been already established in (7) and (8).

Exgnggggggg_g‘g‘ If £ 1s a strictly convex quadratic function,
then the line search 3,1-3,6 is exact and 061 = IR 1 for each 1.

ggggg_; Let £(x) = 0.5xCx + b'x + a, where C is a symmetric posi-
tive definite matrix. Then for each § we have

£(xy + {Bdi) = f(xy) + ﬁdf_gi + 0.516263661)
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hence ]’J > 0 since C is positive definite and dy £ 0 by Step 2,
and for each j we have from (4)

By = ~Galey /Caloay),
the right-hand slde constant being obviously the exact minimizer
of £(x; + fdy) over the nomnegative half-ray. Hence &, = @,
80 that ofy := /31 is set in Step 3.5.

3..Copvergence properties

In this section we shall first prove in Theorem 3.1l a convergence
property for the main algorithm endowed with the step size rule 2,1
and then will use it to establish some convergence results for the
SD, FR, PR and DFP methods under the rule 2.1.

For each i = 0,1,..,, denote by j, the index j for which e(,izuﬂj
is set in Step 3.3 or Step 3.5 of the rule 2.1, If 31> 1, denote
also .«Zi = 1831_1. Then for each 1 with j; > 1 we have

(x4 + obgdy) = £(x)) < 0 . Qy
In fact, (11) follows from Proposition 2.1. If j := 3g> 1, then

the rule did not terminate at j-1, which means that it must have

been
Ry-/R32 2
in Step 3.6, implying
2y v Lgdp) - 2(xg) = By5(1 - 0.58, 1/ F)d5gy > 0

due to (5), which proves (10).
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Theorem 3,1, Let f& cl and let the sequence generated by the
main algorithm using the step size rule 2,1 have the property
X4, = X4 —> 0. 12)
Then each accumulation point (x,,d,) of the sequence {(xi’di)}
satisfies
T
a,Veix) =o. G3)

13299;1:;,, Let x; _E.;z*, a, X5 d, along some subsequence K{O,l,2,...}
which may be chosen so that {oly}scp 1s convergent (since OL ol Smaxfos}
for each i). Let oLi.—E;OC . We shall distinguish two cases:

(a) Let oL>0. Then from obydy = X4 , = X4 —> 0 we have d, = O,
hence (13) holds.

(b) Let o=0. Since di_&)d* and gi_—ls-o Vf(x*) , We have
d'f_gi _;K-'rdEVf(x*) . Assume to the contrary that dLVf(x ) # 0.

Since ol = 0, it must be j; > 1 from some 1EK on and from Step 3.4
we obtain .

oby = -(zi/?'i)digi,
where i\'i = 731‘1' Here o, X5 0, the sequence {?:L}K is bounded

and dr‘jl'_gi _.l.(-—ydEVf(x*) 4 0, which gives Zi X5 0. Now from (10),
(11) we have

£(xy + gdy) - £(x9 > O

£(xy + o(,idi) -tlx) <0
for sufficlently large 1€ K, hence by the continuity argument there
is an ol,’iEL'd,i,;Z'i] such that

£(xy + obydy) = £(xy) =0
holds and by the mean=-value theorem we have

T

dy Ve(xy + S1d44) =0
for some I, €[0,6;16(0,3,]. Now taking the 1imit 1-Soes, from
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;6—1._K_;0 we have ;1 s.l_(; 0 and hence

T
6, V) =o.
This contradicts the assumption d?e Vf(x*) £ 0. Hence (13) holds.

nggg‘ If the line search is exact (as assumed in the original

Step 3 of the main algorithm), then taking the derivative of
£(xy + obdy) at the minimum point, we obtain

by

d384,9 = O Q4
for each i (ef. Polak (31). If (xi,di)_gg(x*,ae)and (12) holds,
then gy o MRS Vf(x") , hence g;., - gi_IE; 0 which gives
T T
584 = ”di(gi-»l - gi) _..E; 0= d_f Vf(x* ) . Hence the condition (13)
is a generalization of (14).

We shall now apply Theorem 3.1 to establish convergence properties
of several known methods under the step size rule 2.1; they arise by
specifying the Step 2 of the main algorithm as follows (cf. [ 1]) :

a) The steepest descent method:

di = "si (1 = 0,1,..0),
b) Conjugate gradient methods:
di-bl = -si"'l + Jidi (i = 0,1,..0) (15)
dO = -80
where
2
$; = |L g3, 2/182 (¥R methoa) (16)
d1 = €1,1(8141 - 8)/UE4H2 (PR metnoa). Q7
¢) The DFP method:
i ,di = "5181 a-= Oslv'--) (18)
where Sy, 1s the unit matrix and updating is done by

T T T T
S141 = Sy + (PyP5)/(039y) - (5;94935,) /(a35,4,)
where py = X441 " %40 94 = 84,7 ~ 84> 1 = 0,1,...5 then all the
matrices S; are symmetric positive definite [1, p. 195].
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Notice that the proofs which follow use anly the property (13),
not the actual construction of the sequence by the rule 2.1. Hence

they are valid under any step size rule maintaining the property
stated in Theorem 3.1,

Proposition 3.1, Let £ECY and let the sequence {xi} constructed
by the steepest descent method using the rule 2.1 satisfy (12).
Then each accumulation point of {xi} is a statlonary point of f,

Broof, If x, _:K.-yx* along some Kc{ﬂ,l‘,...}, then d%‘_gi =
= -llgiﬂf._g—; - IIVi'(x*)ﬂf = 0 due to Theorem 3.1 and the assertion

follows,

Proposition 3,2. Let £&€CT and let both the sequences {xg}» {94}
constructed by the FR (or PR) method using the rule 2.1 be conver=-
gent, Then the limit point of {xi} is a stationary point of f.

Proof. Let Xy X, d;—»d,, so that g4 —>8, = Vf(x*) . Then
premultiplying (15) by gy,,, from (16), (17) we have

2,1 2 2. F ¢4l T
Iegll, (33,18141) = ~UBgl; Wea,all, + 8 4(d38s + A3y, - 81))  €19)
where 61 e IlSi_._l“ze for the FR method and 81 = g§+1(51+1 - 51)

for the PR method, Since digi—bo according to Theorem 3.1, taking
the limit in (19) we obtain ﬂg*ﬂ: = 0, hence g _ = 0.

Rrepesition 3,3, Let £€C” and let {x;) be comstruoted by the
DFP method using the rule 2,1, Assume that (12) holds and that
si—>s, where S 1s a positive definite matrix, Thenm each accumulation
point of {xi} is a stationary point of f.

: K K
Broof, If x; —»x , then g, K, g = Vi(x,), hence d; K, -sg,
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by (18) and 5?.5181 Jc-)gES% , but also gqisigi = -drigi.__x-?o by
Theorem 3.1, hence gESg* = 0 and the positive definiteness of S
implies By = 0.

E;gn_anl,e_; We have tested the rule 2,1 against the Armijo rule
(with B = 0.7) on the example used by Polak in [3], section C.2,
for comparing the perfomncea- of various methods. The example reads

min { exp(xi + ng) + x.f + BOxg; xena}

and clearly has a unique optimal solution x = (O,O)T. We have used
throughout Polak’s starting point x, = (1.32, -0.0"1)T and the stopping
rule [lx ~ x| < 1073, Armijo rule gives the following results
(at each method we depict the number of iterations k and the coor-

dinates of the last iteration x,):

method -k (xk) 1 (xk) 2
SD 35 2,79333E-02 3.60985E-04
FR 12 1.72954E~03 -1,88560E~05
PR 11 1,116 21E-03 1.04664E-04
DFP 10 1.82042E-04 5.48999E-06
BFGS 9 1.97058E-04 =-3.23192E-05

Using alternatively the rule 2.1, we obtained these results:

method k (xx)1 =)
SD 22 3.56810E~02 =6.01563E-03
FR 10 -1.20377TE-03 =1.37141E-05
PR 5 1.03677TE-02 9.10693E-03
DFP 7 =5.23471E-07 ~3.40049E~07

BFGS 6 ~9.85223E-07 -5.75616E~07
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It can be seen that the rule 2,1 performed approximately equally
with SD and FR, a little worse with PR, but essentially better

with DFP and BFGS. This particular result corresponds to our overall
(glthough limited) computational experiencevaccording to which

the rule performs best when incorporated into the DFP or BFGS method.
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