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We give a new proof of a theorem stating that given two square matrices such that their intcrval hull
contains no singular matrix, then each of them can be obtained from the other one by premultiplying it
(from left or right) by a P-matrix.

Let A = (a;j) and B = (b;;) be two n x n matrices. The interval hull of A4 and B,
denoted by Int(A, B), is defined as the set of matrices C = (c;;) satisfying
min{a,'j,b,-,-} <6 < max{a,-,-,b,-j}
for i,j = 1,...,n. We are concerned here with a proof of the following result:

THEOREM Let A and B be two n x n matrices such that Int(A,B) contains no
singular matrix. Then there exist P-matrices Q1,R1,Q2,R; such that

B= Q1A = AR1
A=0B=BR;
hold.

Before proceeding to the proof, we shall give some comments. First, recall that
a square matrix is said to be a P-matrix if all its principal minors are positive [2].
Second, the value of this theorem consists in the fact that it links the linear comple-
mentarity theory to the problem of solving systems of linear equations with inexact
data. In fact, it was shown in [6] that each vertex of the convex hull of the solu-
tion set of a system of linear equations with interval-valued data (which is generally
nonconvex) is a solution of a problem of the form

Ay =Bx+b (1.1)
y=20, x>0 (1.2
yTx=0 (1.3)

where A, B belong to an interval matrix A’ = {A'; A < A' <A} describing the un-
certainties of the coefficients of the linear system. Hence the Theorem, under the
assumption of nonsingularity of each 4’ € A’, gives that A~1B is a P-matrix, which
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in conjunction with the well-known result by Samelson, Thrall and Wesler [8] as-
sures that (1.1)~(1.3) has a unique solution. This, on one hand, shows that the ver-
tices can be found by solving the linear complementarity problem

y=A"Bx+A47'b
y >0, x>0
yIx=0

by standard algorithms (Cottle and Dantzig [1], Lemke [4], Murty [5]) which are all
known to solve finitely linear complementarity problems with P-matrices. On the
other hand, it was shown in [6] that a number of necessary and sufficient nonsin-
gularity conditions for interval matrices can be formulated in terms of solutions of
problems of type (1.1)—(1.3).

The Theorem was first proved in another formulation in [6, Theorem 1.2] via an
auxiliary result on interval matrices. It was reproved (in the same formulation) in [7]
in another way, using no properties of P-matrices but the definition. We are going
to give here a new proof which, in our view, is the most direct one of all three of
them.

Proof of the Theorem  For the purposes of the proof, let C; denote the ith row of

a matrix C. It follows from the assumption that both 4 and B are nonsingular. We

shall first prove that Q; = BA™! is a P-matrix. Assume to the contrary it is not the

case; then, as proved by Fiedler and Ptdk [2] or Gale and Nikaido [3], there exists a

vector x, x # 0, such that xi(BA“lx),- < 0 for each i. Define a matrix C by rows for
i=1,...,nby

C = B; + t;(A; — B;) 2

where ; = 1 if x; =0 and if x; # 0, then #; is an arbitrary root of the continuous
function of one real variable

@i() = xi(B + (A4 - B))A'x

in [0, 1}; such a root exists since ;(0) = x;(BA~1x); <0 and p;(1) = x? > 0. Then it
follows from (2) that C; is a convex combination of A4; and B; for each i € {1,...,n},
hence C € Int(A4, B). Next we prove that

CA'x=0 3)

holds; in fact, if x; =0, then (CA™1x); = 4,47 'x =x; =0, and if x; # 0, then
(CA™tx)i = GA'x = (1/xi)pi(t:) = 0. Therefore (3) implies that C is singular; this
contradiction shows that Q; is a P-matrix. Now, since Int(47,BT)={CT; C¢
Int(A,B)} does not contain a singular matrix, from the result just proved we ob-
tain that B" = Q] 4T for some P-matrix Q{, hence B = AR; where Ry = (Q})T is a
P-matrix.

The second set of equations follows from the first one applied to Int(B, A) which
is equal to Int(A4, B).
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We have this corollary:

COROLLARY Let A, B be two nonsingular matrices such that at least one of the ma-
trices A~\B, AB~1,B=14,B A~1 is not a P-matrix. Then Int(A, B) contains a singu-
lar matrix.

Proof Follows immediately from the Theorem. |

Some other consequences of the Theorem are listed in [7].
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