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Given is a constructive proof of the following theorem: A system of linear equations has a [nonnegative]
solution if and only if each system constructed by replacing each equation by one of the two associated
inequalities has a [nonnegative] solution.

Let
Ax=b ()

be a system of linear equations with an m x n matrix 4. Denote Y, = {y € R™;
lyi| = 1 for each i}, so that Y, consists of 2” elements, and for each y €Y, let
Dy = diag{y1,...,ym} (i.e. (Dy)ii = yi for each i and (Dy);; = 0 for i # j). Together
with (§), we shall consider the family of systems of linear inequalities of the form

D,Ax < Dyb (Sy)

for all y € Y. Obviously, the ith inequality in (Sy) has the form (Ax); < b if y; =1
and is equivalent to (Ax); > b; if y; = —1. It is the purpose of this paper to give a
constructive proof of this theorem:

THEOREM 1 The system (S) has a [nonnegative] solution if and only if (Sy) has a
[nonnegative] solution for each y € Y,y,.

The “only if” part is obvious since each solution of (§) also satisfies (S, ) for each
y € Y. The “if” part is a consequence of the following theorem, which gives a little
more:

THEOREM 2 Let (S,) have a solution x, for each y € Yr,. Then (S) has a solution
which is a convex combination of the x,’s.

If all the x,’s are nonnegative, then their convex combination is also a nonneg-
ative vector; this provides for the respective part of Theorem 1. Theorem 2 was
proved in [2] in a nonconstructive way using Farkas lemma {1]. We shall show here
that a solution to (§) can be constructed from the x,’s algorithmically, although the
algorithm itself is not too much efficient, which is no surprise since it must handle
2™ vectors x, at the outset.
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For the description of the algorithm we shall need a special order of elements
in Y,, which is defined inductively via the sets Y;, j = 1,...,m — 1, in the following
way:

(a) the order of Y is —1, 1;

(b) if y1,...,y is the order of Y}, then (y1,—1),...,(y2,—1), (y1,1),...,(¥2i,1) is

the order of Yj41.

We additionally define Yy = {1}. Further, for any sequence sy,...,52 with an even
number of elements, each pair s;,5;4+5 is called a conjugate pair, j = 1,...,A.

We may now formulate the following “cancellation algorithm” for finding a solu-
tion to (S) from known solutions xy to (Sy), y € Yiu:

Algorithm

STEP 0 Form a sequence of vectors (x,(Axy — b)T)T ordered in the order of Y.
STEP 1 For each conjugate pair x,x’ in the current sequence compute
X

A=

if xp # x
A=1 otherwise

where k is the index of the current last entry and set
x:=Ax+(1-A)x".

STEP 2 Cancel the second part of the sequence and in the remaining part delete
the last entry of each vector.

STEP 3 If there remains a single vector x, terminate. Otherwise go to Step 1.
Now, both the algorithm and the preceding theorems are justified by this result:

THEOREM 3 The vector x obtained in Step 3 of the algorithm satisfies Ax = b and
x € Conv{xy;y € Yo}

Proof The algorithm starts with 2™ vectors of dimension n + m and proceeds by
halving the sequence and deleting the last entry, hence it is finite and at the end
gives a single n-dimensional vector x. Consider an (n + j)-dimensional vector X in
a current step of the algorithm before updating (there are 2/ such vectors) and let
¥,y €Y}, be a vector which occupies the same position in the order of ¥; as X in
the current sequence. Denote x} = (%1,...,%,) and 7} = (Xn+1,..., Xn+j)T. We shall
prove that for each j = m,...,1,0 and each y € Y; there holds

yiA i <yiby  (i=1,...,)) (1.1)
(Axlyi=b  (i=j+1,..,m) (1.2)
(r))i = (Ax) =By (i=1,...,J) (1.3)

x,eX, (1.4
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where X = Conv{x,;y € Y, }. The proof proceeds by induction on j = m,...,0. The

case j =m is trivial since xy’ = x, for each y € Y, hence (1.1) is equivalent to

(Sy) and (1.3) follows from the initial construction in Step 0. So assume (1.1)«1.4)
to hold for some j € {1,...,m} and each y € Y;. Let y € Y;_,. Since, by the order of

Y;, any two conjugate vectors in Y; differ only in the jth entry, x§_1 was constructed
in Step 1 by
X7l = Ax’ p+ - ,\)x(y 1

where
- (r(ly,l))i - . (Axéy,l) - b)}'
()i — ('6,—1))}' (Axfy;) - b)j - (Axfy,q) —b);

€[0,1} 2

since (Ax&l) —b); <0 and (Ax{y,_l) — b)j > 0 due to (1.1). Hence we have

Yi(Ax i< yib (=15 =1)
(Ax)™Di=b  (=j+1,...,m)

since (L1) and (1.2), bemg satisfied by x(y -1 and x(y 1), are also satlsfled by their
convex combination xy ~L, From (2) we obtain (Axy —b)j = A(Ax —n— b+
1- ’\)(Ax(y,n —b); =0, hence

(Ax)™1); = b; (3)

holds provided the denominator in (2) is nonzero. If (Ax{y y— b= (Ax{y 1y =i
then the common value is both nonnegative and nonpositive, so that (Ax 1)),
(Ax(y 1))] and (3) again holds. From the updatmg formula in Step 1 we see
that (r )\(r(y i +(1- /\)(r(y ni = /\(Ax(y —y— b+ (- /\)(Axo, y—bi=
(Ax), —b),, so that (1. 3) also holds for j — 1. Since xfy n€X, x(y € X and X

is convex, we get that xJ~" € X, thus completing the induction.

So for j = 0 we obtain from (1. 2) (1.4) that Ax9 = b, x) € X holds for the single
remaining n-dimensional vector x , which is equal to the above x from Step 3. This
concludes the proof. |

To illustrate the algorithm, consider a very simple example:

X1+x—x3=1

)

—2x1+3x3 +x3=2.

We may guess the following solutions to the (Sy)’s: x(_y,_1) = (0,1,0)T, X1 =
(0,0,3)F, x_11y = (20,07, x¢11) = (0,0,0)T. The performance of the algorithm may
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be seen from the following scheme, where the arrows indicate the convex combina-
tions of conjugate vectors:

T T
©1.00.17 — (350" (% & &)
(0,0,3,—4,1)T (0,0,2,-3)T
(2,0,0,1,—6)T
(0,0,0,—1,-2)T

The solution to (4) found is x = (3, {1, )"

Although a practical application of the theorems given remains doubtful, they can
still be used in some theoretical considerations. Theorem 2 was employed in the
proof of the main convex hull theorem in [3] and used for establishing a necessary
and sufficient nonsingularity condition for interval matrices in [4].
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