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ABSTRACT

For a square floating point matrix A we give a test for the existence of a singular
real matrix which rounds to A.

In this paper, which may be considered a footnote to [2], we show how a
result concerning interval matrices can be applied to handle, at least theoreti-
cally, the problem of nonsingularity of real matrices in a floating point
representation. We give the results for the decimal floating point system;
however, the technique used applies easily to other systems (e.g. binary or
hexadecimal) as well.

Let A =(a,;) be an n X n floating point matrix in a decimal floating point
system with normalized mantissa length d decimal digits. The matrix A
represents in fact a whole class C(A) of real matrices which round to A.
Obviously, A can be considered numerically nonsingular if all matrices in
C(A) are nonsingular, and numerically singular if C(A) contains a singular
matrix, since in the latter case A cannot be distinguished from a singular
matrix by means of our floating point system.

It follows from the properties of correct rounding that the class C(A) can

be described as
C(A)={A5A-1074, <A <A+107"4,},
where, with the coefficients of A written in the form
a;; =t m;; 107 (i,j=1,...,n),
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the matrices A, =(aj,;), A, =(a},) are given by
a;;=05%x107  (i,j=1,...,n)
a};=05%x107  if m,;€(0.1,1)
a};=05x107"" if m,;=0.1.
Let us denote
A,=A+31079A - A),
A, = %(Al + Az)’

so that A > 0. Then C(A) can be written in a more appropriate centered
form

C(A)={A A, —1074, <A <A, +1074,}.
Let us now introduce, assuming that A, is nonsingular, the number
c(A) =log,, max{pO(AC—ISIArSQ); S,,8, signature matrices}, (1)

where a signature matrix is a diagonal matrix all of whose diagonal entries
are equal to +1 or —1, and for a square matrix B, p,(B) is defined by

po( B) = max{|A|; Bx = Ax, x # 0, A real}.

Hence p, is an analogue of the spectral radius of B, with the maximum
being taken only over real eigenvalues; we define po(B)=0 if no real
eigenvalue exists.

We shall show in the next theorem that c{A) is correctly defined and is
closely connected to our problem of testing numerical (non)singularity:

TueoreMm. Let A be a floating point matrix such that A, is nonsingular.
Then c(A) is well defined and we have:

() if c(A) < d, then each matrix in C(A) is nonsingular;
(i) if c(A)> d, then C(A) contains a singular matrix.
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ComMeNTs. The case of c(A) = d remains undecided, but it can scarcely
occur, since c(A) is generally a real number, while d is integer. Also, notice
that if no coefficient of A is of the form 107, p integer, then A, = A, so that in
this case the assumption of the theorem reduces to nonsingularity of A.

Proof. For a positive real number B, consider the interval matrix
My={A; A, —BA, <A'<A +BA).

According to assertion (C3) of Theorem 5.1 in [2], My contains a singular
matrix if and only if

BPO(Ac—IslArsz) 21

holds for some signature matrices §,,S,. Since |A | <2A, (as can be easily
verified), it follows that M, contains the zero matrix; thus p (A 'S,A,S,) > 3
for some signature matrices S, S,, which shows that the maximum in (1) is
positive; hence ¢(A) is well defined. Next we prove (i) and (ii)

() If c(A)<d, then 1079 (A7 'S,A,S,) <1 for any signature matrices
S,,S,, which in view of the above-quoted theorem shows that M-+ consists
only of nonsingular matrices. Since C(A) C M,-4, the assertion follows.

(ii) If ¢(A)> d, then 107%,(A;'S,A,S,)>1 holds for some signature
matrices $,,S,. Take a B€(0,10™%) such that Bpy(A;'S,A,S,)>1 still
holds. Then Mg contains a singular matrix, and thus so does C(A), since
Mg C C(A) in view of B <107 [

The result, although solving the problem in principle, remains merely of
theoretical interest due to the complicated form of the formula (1) (note that
there are 2" signature matrices of size n). Nevertheless, in the special case of
nonnegative invertible matrices the formula for ¢(A) can be given a very
simple form (p denotes the spectral radius):

CoroLrary. Let AT' > 0. Then we have
c(A) =log,,p(AA,). (2)

Proof. With E the unit matrix, from the Perron-Frobenius theorem
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[1] we ob'tain that
c(A) =log,gmaxg, s, pO(A;ISIArSZ)
<log o maxs s p(IA7'S,A,Ssl) <logy, p(A71A,)
=log,o po( A7 'EA,E) < c(A),
which proves (2).
The author thanks an anonymous referee for valuable comments.
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