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INTERVAL SOLUTIONS OF LINEAR INTERVAL EQUATIONS
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(Received June 2, 1989)
Summary. It is shown that if the concept of an interval solution to a system of linear interval

equations given by Ratschek and Sauer is slightly modified, then only two nonlinear equations
are to be solved to find a modified interval solution or to verify that no such solution exists.
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In this paper we shall deal with the following problem. Given a square interval
matrix 4" = [47,A%] ={4; 47 £ A £ A%}, where A~ = (a;) and A" = (a};
are n X n matrices, and an interval vector b' = [b”,b"] ={h;b” £ b £ b*}
with b~ = (by), b* = (b{) € R", find an interval n-vector x* = [x7, x*] such that

) T e a1 L7571 = 5751 6= L)

holds, where the operations involved are performed in interval arithmetic and are
generally defined by

[ (5787 = foe s we o2, Be (7, B
for o€ {+, —, *, [}, which amounts to
o]+ 8 BT = [ + 0 + 5]
[07 "] = [, 8 ] =[a" = 8", a* — 7]
[, a*].[B7,8"] = [min{a B ,a ", a* B, a*p*},
max {«” B, 0B, a* ", a*p*}]
- L+ - p+ - 4+ 1
e Yl ] = o) e
where
1 1 1 . s
ﬂj = [E;, [7“] provided 0¢[p~, 8*]
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(for interval arithmetic, see e.g. [4]). This concept of solution was formulated for
interval systems with arbitrary m x n interval matrices by Ratschek and Sauer [7]
and solved there for the case m = L. It seems that a general solution to (1) is not yet
known; cf. also Nickel [5]. In this paper we shall show that systems of type (1) with
square regular interval mairices can be solved if we impose an additional restriction
upon the concept of a solution in the following sense:

Definition. Given A’ (square) and b?, an interval vector x is called a strong solution
if it satisfies (1) and if there exist 4’, 4" € A" and x',x" € x! such that A'x’ = b,
A"x" = b* hold.

Let us first introduce

AC = -i—(A_ =+ A+),
4 = J(a* — 47,

sothat A > 0and A~ = A, — 4, A* = A_ + A. We shall show that the problem
of finding a strong solution is closely connected with solving the nonlinear equations

(2.1) Ax — Alx| =b",
(2.2) Ax + Alx| = b*

where x = (x;) is a real (not interval) vector and the absolute value is defined as
|x| = (J»;]). We shall need some results about solutions to (2.1), (2.2). A square
interval matrix A’ is called regular if each A € A is nonsingular.

Theorem 1. Let A" be regular. Then the equations (2.1), (2.2) have unique solutions
x, and x,, respectively.

For the proof of this result, see [8], Theorem 1.2. To solve (2.1) and (2.2), we may
observe that le = Dx, where D is a diagonal matrix with D;; = 1 if x; 2 0 and
D;; = —1 otherwise. Then (2.1) can be written as a system of linear equations
(A. — 4D)x = b~, where D must be found such that Dx(= |x|) 2 0. This is the
underlying idea of the following algorithm:

Algorithm 1 (for solving (2.1), (2.2)).

Step 0. Set D = E (unit matrix).

Step 1. Solve (A, — AD) x = b~ (for (2.2): (4, + 4D) x = b™).
Step 2. If Dx = 0, set x, := x {(or, x; := x) and terminate.
Step 3. Otherwise find k = min {j; D;;x; < 0}.

Step 4. Set Dy, := — D, and go to Step 1.

The algorithm is general, as the following result shows:
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Theorem 2. Let A" be regular. Then Algorithm 1 is finite, passing through
Step 1 at most 2" times.

The proof of this theorem can be again found in [8]. Another possibility, though
not general, for solving (2.1) (similarly, (2.2)) consists in reformulating (2.1) as
a fixed-point equation

x=A7 Alx| + 476"
which may be solved iteratively by

x° =47,

XU = AT AR + ATTDT (i =10,1,..),
but convergence of {x'} to x, can be established only under the assumption that
Q(IA; 1| A) < 1, which is not always the case with regular interval matrices; never-
theless, if 4 is of small norm, then the iterative method is to be preferred.

Returning now back to our original problem of finding a strong solution, we shall
show in the next theorem that if strong solutions exist at all, then one of them can
be easily expressed by means of the above vectors x,, x,. Since generally neither
X; < X, not x; = x, holds, we introduce min {xy, x,} as the vector with com-
ponents min {(x,);, (x;);} ( = 1, ..., n), and similarly for max {x,, x,}.

Theorem 3. Let A’ be regular and let (1) have a strong solution. Then x' =
=[x, x*], given by
€) X~ = min {x;, x,} ,

xt = max {x, x,},

is also a strong solution.

Proof. Let & be a strong solution. Then there exist 4', A" € A and x’, x" e &1

such that A’x’ = b~, A”x" = b hold. Due to the definition of interval operations,
the resulting left-hand side interval vector in (1) contains all vectors of the form Ax’,
A e A'. On the other hand, according to the theorem by Oettli and Prager [6], we
have {Ax'; Ae A"} = [4.x — Alx' ,AX + 4 x’|]. Since A’x’ = b~, we conclude
that

Ax — Alx| = b~

holds, implying x' = x, in view of the uniqueness of the solution to (2.1) stated in
Theorem 1. In a similar way we would obtain that x” = x,. Now, for x/ given by (3),
the interval vector with the components

jZ::l[a,._j, anl-[x7.%x7] (i=1,..,m)

is contained in b' since x! < %!, but also contains b~ and b* since x,, x, € x’;
hence it equals b, so that (1) holds and x' is a strong solution. Q.E.D.
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Summing up the results, we can formulate the following algorithm for solving
our problem:

Algorithm 2 (finding a strong solution)
Step 1. Solve (2.1), (2.2) (by Algorithm 1 or iteratively) to find x,, x,.
Step 2. Construct x! by (3)
Step 3. If x” satisfies (1), stop: x' is a strong solution.
Step 4. Otherwise stop: no strong solution exists.

The algorithm works provided A’ is regular, which is the case e.g. if the spectral
radius of |A_'| 4 is less than 1 (Beeck [2]), a condition widely satisfied in practice.

We add two small examples with regular matrices to illustrate the possible out-
comes.

Example 1 (Hansen [3]). Let

_ {20 . (31
(e -6)
and b~ = (0, 60)", b* = (120, 240)". Solving (2.1), (2.2), we obtain

X, = (0, 30)T , Xy = 1%2, 1;3,2)T ’

and
x" = ([0, 2], [30, 5]
satisfies (1), therefore it is a strong solution.

Example 2 (Barth and Nuding [1]). Let

(2 =2y . (41
4 _(—1 2)’ 4 “(2 4)
and b~ = (=2, =2)T, b* = (2, 2)". Here x' does not satisfy (1), so that no strong

solution exists.
A preliminary version of this paper appeared in [9]
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Souhrn

INTERVALOVA RESENI SOQUSTAV LINEARN{CH INTERVALOVYCH ROVNIC

Jiikf ROHN

Je zavedeno modifikované intervalové fefeni soustavy linearnich intervalovych rovnic, k jehoZ
vypodtu je tieba vyfeSit dvé soustavy nelinearnich rovnic.

Pesomc

WHTEPBAJILHBIE PEMIEHUA CUCTEM JIMHEMHBIX
WHTEPBAJIBHBIX VPABHEHMIA
Jiitf ROHN

B cTaThe NOKa3aHO, KAK MOXKHO BEIYHCIATE MOARGUIEPOBAHHOE WHTEPBAIPHOE PELICHHE CHCTEMBL
JHHEHHBIX HHTEPBAIGHEX YPABHEHH IIyTEM DEINeHUA ABYX CHCTEM HEIHHCHHEIX YPAaBHCHHI.

Author's address: RNDr. Jiti Rokn, Matematicko-fyzikalni fakulta UK, Malostranské nam. 25,
118 00 Praha 1.

224




