INTERVAL SOLUTIONS OF LINEAR INTERVAL EQUATIONS

Jiří Rohn

(Received June 2, 1989)

Summary. It is shown that if the concept of an interval solution to a system of linear interval equations given by Ratschek and Sauer is slightly modified, then only two nonlinear equations are to be solved to find a modified interval solution or to verify that no such solution exists.

Keywords: linear systems, interval arithmetic.

AMS Classification: 65G10, 65H10.

In this paper we shall deal with the following problem. Given a square interval matrix $A^I = [A^-, A^+] = \{A; A^- \le A \le A^+\}$, where $A^- = (a_{ij}^-)$ and $A^+ = (a_{ij}^+)$ are $n \times n$ matrices, and an interval vector $b^I = [b^-, b^+] = \{b; b^- \le b \le b^+\}$ with $b^- = (b_i^-)$, $b^+ = (b_i^+) \in R^n$, find an interval n-vector $x^I = [x^-, x^+]$ such that

(1)
$$\sum_{i=1}^{n} \left[a_{ij}^{-}, a_{ij}^{+} \right] \cdot \left[x_{j}^{-}, x_{j}^{+} \right] = \left[b_{i}^{-}, b_{i}^{+} \right] \quad (i = 1, ..., n)$$

holds, where the operations involved are performed in interval arithmetic and are generally defined by

$$\left[\alpha^{-},\alpha^{+}\right]\circ\left[\beta^{-},\beta^{+}\right]=\left\{\alpha\circ\beta;\ \alpha\in\left[\alpha^{-},\alpha^{+}\right],\ \beta\in\left[\beta^{-},\beta^{+}\right]\right\}$$

for $\circ \in \{+, -, \cdot, /\}$, which amounts to

$$\begin{split} \left[\alpha^{-},\alpha^{+}\right] + \left[\beta^{-},\beta^{+}\right] &= \left[\alpha^{-} + \beta^{-},\alpha^{+} + \beta^{+}\right] \\ \left[\alpha^{-},\alpha^{+}\right] - \left[\beta^{-},\beta^{+}\right] &= \left[\alpha^{-} - \beta^{+},\alpha^{+} - \beta^{-}\right] \\ \left[\alpha^{-},\alpha^{+}\right] \cdot \left[\beta^{-},\beta^{+}\right] &= \left[\min\left\{\alpha^{-}\beta^{-},\alpha^{-}\beta^{+},\alpha^{+}\beta^{-},\alpha^{+}\beta^{+}\right\}\right] \\ \max\left\{\alpha^{-}\beta^{-},\alpha^{-}\beta^{+},\alpha^{+}\beta^{-},\alpha^{+}\beta^{+}\right\} \end{split}$$

$$\left[\alpha^{-},\alpha^{+}\right]/\left[\beta^{-},\beta^{+}\right]=\left[\alpha^{-},\alpha^{+}\right]\cdot\frac{1}{\left[\beta^{-},\beta^{+}\right]},$$

where

$$\frac{1}{\left[\beta^{-},\,\beta^{+}\right]} = \left[\frac{1}{\beta^{+}}\,,\,\frac{1}{\beta^{-}}\right] \quad \text{provided} \quad 0 \notin \left[\beta^{-},\,\beta^{+}\right]$$

(for interval arithmetic, see e.g. [4]). This concept of solution was formulated for interval systems with arbitrary $m \times n$ interval matrices by Ratschek and Sauer [7] and solved there for the case m = 1. It seems that a general solution to (1) is not yet known; cf. also Nickel [5]. In this paper we shall show that systems of type (1) with square regular interval matrices can be solved if we impose an additional restriction upon the concept of a solution in the following sense:

Definition. Given A^I (square) and b^I , an interval vector x^I is called a *strong solution* if it satisfies (1) and if there exist A', $A'' \in A^I$ and x', $x'' \in x^I$ such that $A'x' = b^-$, $A''x'' = b^+$ hold.

Let us first introduce

$$A_c = \frac{1}{2}(A^- + A^+),$$

 $\Delta = \frac{1}{2}(A^+ - A^-),$

so that $\Delta \ge 0$ and $A^- = A_c - \Delta$, $A^+ = A_c + \Delta$. We shall show that the problem of finding a strong solution is closely connected with solving the nonlinear equations

$$(2.1) A_c x - \Delta |x| = b^-,$$

$$(2.2) A_c x + \Delta |x| = b^+$$

where $x = (x_j)$ is a real (not interval) vector and the absolute value is defined as $|x| = (|x_j|)$. We shall need some results about solutions to (2.1), (2.2). A square interval matrix A^I is called regular if each $A \in A^I$ is nonsingular.

Theorem 1. Let A^{I} be regular. Then the equations (2.1), (2.2) have unique solutions x_1 and x_2 , respectively.

For the proof of this result, see [8], Theorem 1.2. To solve (2.1) and (2.2), we may observe that |x| = Dx, where D is a diagonal matrix with $D_{jj} = 1$ if $x_j \ge 0$ and $D_{jj} = -1$ otherwise. Then (2.1) can be written as a system of linear equations $(A_c - \Delta D) x = b^-$, where D must be found such that $Dx (= |x|) \ge 0$. This is the underlying idea of the following algorithm:

Algorithm 1 (for solving (2.1), (2.2)).

Step 0. Set D = E (unit matrix).

Step 1. Solve
$$(A_c - \Delta D) x = b^-$$
 (for (2.2): $(A_c + \Delta D) x = b^+$).

Step 2. If $Dx \ge 0$, set $x_1 := x$ (or, $x_2 := x$) and terminate.

Step 3. Otherwise find $k = \min\{j; D_{ji}x_i < 0\}$.

Step 4. Set $D_{kk} := -D_{kk}$ and go to Step 1.

The algorithm is general, as the following result shows:

Theorem 2. Let A^I be regular. Then Algorithm 1 is finite, passing through Step 1 at most 2^n times.

The proof of this theorem can be again found in [8]. Another possibility, though not general, for solving (2.1) (similarly, (2.2)) consists in reformulating (2.1) as a fixed-point equation

$$x = A_c^{-1} \Delta |x| + A_c^{-1} b^{-1}$$

which may be solved iteratively by

$$x^{0} = A_{c}^{-1}b^{-},$$

$$x^{i+1} = A_{c}^{-1}\Delta|x^{i}| + A_{c}^{-1}b^{-} \quad (i = 0, 1, ...),$$

but convergence of $\{x^i\}$ to x_1 can be established only under the assumption that $\varrho(\left|A_c^{-1}\right|\Delta) < 1$, which is not always the case with regular interval matrices; nevertheless, if Δ is of small norm, then the iterative method is to be preferred.

Returning now back to our original problem of finding a strong solution, we shall show in the next theorem that if strong solutions exist at all, then one of them can be easily expressed by means of the above vectors x_1, x_2 . Since generally neither $x_1 \leq x_2$, nor $x_1 \geq x_2$ holds, we introduce min $\{x_1, x_2\}$ as the vector with components min $\{(x_1)_j, (x_2)_j\}$ (j = 1, ..., n), and similarly for max $\{x_1, x_2\}$.

Theorem 3. Let A^I be regular and let (1) have a strong solution. Then $x^I = [x^-, x^+]$, given by

(3)
$$x^{-} = \min \{x_1, x_2\},$$
$$x^{+} = \max \{x_1, x_2\},$$

is also a strong solution.

Proof. Let \tilde{x}^I be a strong solution. Then there exist A', $A'' \in A^I$ and x', $x'' \in \tilde{x}^I$ such that $A'x' = b^-$, $A''x'' = b^+$ hold. Due to the definition of interval operations, the resulting left-hand side interval vector in (1) contains all vectors of the form Ax', $A \in A^I$. On the other hand, according to the theorem by Oettli and Prager [6], we have $\{Ax'; A \in A^I\} = [A_cx' - \Delta|x'|, A_cx' + \Delta|x'|]$. Since $A'x' = b^-$, we conclude that

$$A_c x' - \Delta |x'| = b^-$$

holds, implying $x' = x_1$ in view of the uniqueness of the solution to (2.1) stated in Theorem 1. In a similar way we would obtain that $x'' = x_2$. Now, for x^I given by (3), the interval vector with the components

$$\sum_{i=1}^{n} \left[a_{ij}^{-}, a_{ij}^{+} \right] \cdot \left[x_{j}^{-}, x_{j}^{+} \right] \quad (i = 1, ..., n)$$

is contained in b^I since $x^I \subset \tilde{x}^I$, but also contains b^- and b^+ since $x_1, x_2 \in x^I$; hence it equals b^I , so that (1) holds and x^I is a strong solution. Q.E.D.

Summing up the results, we can formulate the following algorithm for solving our problem:

Algorithm 2 (finding a strong solution)

Step 1. Solve (2.1), (2.2) (by Algorithm 1 or iteratively) to find x_1, x_2 .

Step 2. Construct x^I by (3).

Step 3. If x^I satisfies (1), stop: x^I is a strong solution.

Step 4. Otherwise stop: no strong solution exists.

The algorithm works provided A^{I} is regular, which is the case e.g. if the spectral radius of $|A_c^{-1}| \Delta$ is less than 1 (Beeck [2]), a condition widely satisfied in practice.

We add two small examples with regular matrices to illustrate the possible outcomes.

Example 1 (Hansen [3]). Let

$$A^- = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}, \qquad A^+ = \begin{pmatrix} 3 & 1 \\ 2 & 3 \end{pmatrix}$$

and $b^- = (0, 60)^T$, $b^+ = (120, 240)^T$. Solving (2.1), (2.2), we obtain

$$x_1 = (0, 30)^{\mathrm{T}}, \quad x_2 = (\frac{120}{7}, \frac{480}{7})^{\mathrm{T}},$$

and

$$x^{I} = ([0, \frac{120}{7}], [30, \frac{480}{7}])^{T}$$

satisfies (1), therefore it is a strong solution.

Example 2 (Barth and Nuding [1]). Let

$$A^{-} = \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix}, \quad A^{+} = \begin{pmatrix} 4 & 1 \\ 2 & 4 \end{pmatrix}$$

and $b^- = (-2, -2)^T$, $b^+ = (2, 2)^T$. Here x^I does not satisfy (1), so that no strong solution exists.

A preliminary version of this paper appeared in [9].

References

- [1] W. Barth, E. Nuding: Optimale Lösung von Intervallgleichungssystemen, Computing 12 (1974), 117-125.
- [2] H. Beeck: Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen, in: Interval Mathematics (K. Nickel, Ed.). Lecture Notes, Springer 1975, 150-159.
- [3] E. Hansen: On Linear Algebraic Equations with Interval Coefficients, in: Topics in Interval Analysis (E. Hansen, Ed.). Clarendon Press, Oxford 1969.
- [4] R. E. Moore: Interval Analysis. Prentice-Hall, Englewood Cliffs 1966.
- [5] K. Nickel: Die Auflösbarkeit linearer Kreisscheiben- und Intervall-Gleichungssysteme. Freiburger Intervall-Berichte 81/3, 11-46.

- [6] W. Oettli, W. Prager: Compatibility of Approximate Solution of Linear Equations with Given Error Bounds for Coefficients and Right-Hand Sides. Numerische Mathematik 6 (1964), 405-409.
- [7] H. Ratschek, W. Sauer: Linear Interval Equations. Computing 28 (1982), 105-115.
- [8] J. Rohn: Some Results on Interval Linear Systems. Freiburger Intervall-Berichte 85/4,
- [9] J. Rohn: A Note on Solving Equations of Type $A^I x^I = b^I$. Freiburger Intervall-Berichte 86/4, 29-31.

Souhrn

INTERVALOVÁ ŘEŠENÍ SOUSTAV LINEÁRNÍCH INTERVALOVÝCH ROVNIC

Jiří Rohn

Je zavedeno modifikované intervalové řešení soustavy lineárních intervalových rovnic, k jehož výpočtu je třeba vyřešit dvě soustavy nelineárních rovnic.

Резюмс

ИНТЕРВАЛЬНЫЕ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ ИНТЕРВАЛЬНЫХ УРАВНЕНИЙ

Jiří Rohn

В статье показано, как можно вычислить модифицированное интервальное решение системы линейных интервальных уравнений путём решения двух систем нелинейных уравнений.

Author's address: RNDr. Jiří Rohn, Matematicko-fyzikální fakulta UK, Malostranské nám. 25, 118 00 Praha 1.