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NONSINGULARITY AND P-MATRICES
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Summary. New proofs of two previously published theorems relating nonsingularity of interval
matrices to P-matrices are given.
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In [5] we proved, in a broader frame of the problem of solving linear interval
systems, two theorems relating nonsingularity of interval matrices to P-matrices
(Theorems 1 and 2 below). It is the purpose of this paper to give alternative proofs
of them, from which it can be perhaps better seen how nonsingularity is intertwinned
with P-property. We also include some consequences implied by the properties of
P-matrices.

We begin with this simple auxiliary result:

Lemma, Let A be a nonsingular n x n matrix and let B be an n X n matrix
whose rows, except the j-th, are zero. Let 1 + (BA™'),; < 0. Then there exists
a 1€(0, 1] such that A + tB is singular.

Proof. Consider the function ¢ of one real variable defined by ¢(1) = 1 +

+ 1(BA™1);;. Since ¢(0) > 0and (1) < 0, there exists a € (0, 1] such that ¢(t) = 0.

Then the matrix 4 + tB = (E + tBA™') A is singular since det (E + tBA™') =

=1+ (BA™"); = 0. ]

Let A~, A" be two n x n matrices, 4~ £ A” (the inequality to be understood
componcntwise). The set of matrices

A'={4;4- £ 44"}

is called an interval matrix; we say that A’ is nonsingular (in [5]: regular) if each
A e A'is nonsingular. A square matrix A is said to be a P-matrix [1] if all its principal
minors are positive.
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First, we have this result:

Theorem 1. Let A" be nonsingular. Then for each A, A, € A", both A,A7" and
A7'A; are P-matrices.
Proof. The proof consists of several steps. Let 4,, A, € AL

(1) We shall prove that all leading principal minors m,, ..., m, of A,4;"' are
positive. Put D =4, — A, so that 4,4;' = E + DA;', and denote by D;
(j = 1,..., n) the matrix whose first j rows are identical with those of D and the
remaining ones are zero. Then

m; = det (E + D;47%)
holds for j = 1, ..., n. We shall prove by induction that m; > 0 for each j:

(1.1) Case j = 1. Since m, = det(E + D,A;') =1 + (D,45'),,, the above
lemma implies m, > 0, for otherwise the matrix A, + tD, would be singular for
some ¢ (0, 1] but 4, + tD, € A’, which is a contradiction.

(1.2) Case j > 1. Assume that m;_, > 0 and consider the matrix

(E+ D;A;")(E + D;_yA7")" ' = E+(D; — D;-) (4, + D;_)*.
Taking dcterminants on both sides we obtain

m;

=1+ [(D; = Dj-() (4, + D;_1)" ']

i—1
If the right-hand side werc nonpositive, then, according to the lemma, A, + D;_; +
+ i(D; — D; ;) would be singular for some te(0,1], which is a contradiction
since it is a matrix from A’. Hence

m.
—_—d =0
mJ -1
holds, which in conjunction with the induction hypothesis gives that m; > 0, which
concludes the inductive proof.

(2) Second we shall prove that each principal minor of 4,45 * is positive. Consider
a principal minor formed from the rows and columns with indices k,, ..., k,, 1 <
£ r £ n. Let R be any permutation matrix with Ry ; =1 (j = 1,...,7). Then the
above minor is equal to the r-th leading principal minor of R™4,;45 'R = (RT4,R).
-(RTA4,R)™*. Since the interval matrix {R"4R; A € A"} is nonsingular, all leading
principal minors of (R"4,R)(R"4,R)™! are positive due to (1).

(3) To prove that A7'A4, is also a P-matrix, consider the transpose interval
matrix (A")T = {AT; A e A"}. According to part (2), its nonsingularity implies that
(43) (A])"" = (A7 'A,)T is a P-matrix, hence so is A} '4,. This completes the proof.

n
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We shall now show that the rcsult can be in a certain sense reversed, so that the
P-property of a finite number of matrices of the form A7 ' 4, willimply nonsingularity
of A, To this end, let us denote

_}__
4 =HA" - A7),
then A~ = A, — 4, A* = A, + 4, 4 = 0. A diagonal matrix S satisfying |S;| = 1
for cach i is called a signature matrix, so that there are 2" signature matrices of size n.

Theorem 2. An interval matrix A is nonsingular if and only if for each signature
matrix S, A, — SA is nonsingular and (A, — S4)™' (A, + S4) is a P-matrix.

Proof. The “only if” part being an obvious consequence of Theorem 1, we must
prove the “if ” part only. This will be done if we prove that for each A € A' and each
b e R", the system of linear equations

Ax = b

has a solution, which, according to a theorem proved in [6], is equivalent to the
fact that for each signature matrix S, the system of linear inequalities

(*) SAx = Sb

has a solution. To show this, consider the lineat complementé.rity problem
x, = (A, — SA)Y ' (A, + SA)x, + (A. — S4)"' b,
x1x, =0,
x, 20, x,20.

Since (A, — S4)™! (A4, + S4) is a P-matrix by the assumption, this problem has
a solution x, x,, as proved in [7]. Then

Afxy — x3) — SA(xy + x;) = b
and for each A € AT we have

SA(xl - x2) e SAc(xl - xz) + S(A - Ac) (xl - xl) =

Z SA(x; — x3) — A(x; + x,) = Sb,
hence (*) has a solution, which by virtue of the above-quoted theorem proves that A’
is nonsingular, [ ]

It is worth noting that the matrices (A, — S4)™* (4, + S4) cannot be replaced

by matrices of the type (4, — S4) (4. + S4)~* in the formulation of Theorem 2:

Example 1 (communicated to the author by M. Baumann). Let
31\ . (13
4 _(1 3)’ 4 '(5 7)'
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Then (4, — S4) (4, + S4)™* is a P-matrix for each signature matrix S, but A’
contains. the singular matrix

33
33)°
Since each positive definite (not necessarily symmetric) matrix is a P-matrix [1],
we obtain a consequence:

Corollary 1. For each signature matrix S, let A, — SA be nonsingular and
(4. — sS4y ' (4, + SA4) positive definite. Then A" is nonsingular.

The converse implication is, however, not true:

Example 2. Let

o (-L 1 . (31
= -(o)

Then A" is obviously nonsingular, but none of the matrices (4, — S4)~* (4, + S4)
is positive definite.

Finally, using the well-known properties of P-matrices, we may draw some con-
scquences regarding nonsingular interval matrices:

Corollary 2. Let A” be nonsingular. Then for each A,, A, € A" we have:
(i) each diagonal element of both A7'A, and A A" is positive,
(ii) for each signature matrix S there exist x,,x, such that A;x, = A,x,,
Sx; >0, Sx; > 0,
(iii) for each signature matrix S there exist x,, x, such that A7 'x, = A5 'x,,
Sx; > 0, Sx, > 0,

(iv) if Aix; = Ayx, for some x; + 0, x;, + 0, then (x,);(x,); > O for some

ie{l, ...,n},
(V) if AT x; = A;'x, for some x, +£ 0, x, + 0, then (x4): (xz),- > 0 for some
ie{l,...,n}.

Proof. (i) follows from the fact that each diagonal element (i.c., first order minor)
of a P-matrix is positive. (ii) Let S be a signature matrix. Then the interval matrix
{A4S; A€ A"} is nonsingular, hence (A4,S)7!(4,S) = SA;'4,S is a P-matrix;
then, as proved by Gale and Nikaido [3], there exists a y, > O such that y, =
= SA7'A4,Sy, > 0. Setting x, = Sy,, x, = Sy,, we obtain vectors with the pro-
perties stated. (iii) is proved in a similar manner as (ii). (iv) If A;x; = A,x,, then
x, = A7 '4,x, and since A7'A4, is a P-matrix, the result follows from the charac-
terization by Fiedler and Ptik [2]. (v) follows in a similar way from the fact that
A, A7 is a P-matrix. . ‘ [}
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The necessary and sufficient nonsingularity conditions given in Theorem 2 are
generally very difficult to verify. This fact becomes more understandable in the light
of the recent result by Poljak and Rohn [4] stating that testing nonsingularity of an
interval matrix is an NP-complete problem.
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Souhrn

REGULARITA A P-MATICE
Jikf ROHN

Jsou uvedeny nové ditkazy dvou dfive publikovanych v&t o vztahu regularity intervalovych
maltic k redlngm P-maticim.

Pesome

PET'VIIIPHOCTD U P-MATPHULIbL

JIRi ROHN

B cTaTht NpHBEICHH HOBLIE JOKA3ATENLCTBA JBYX PaHee ONMyGIMKOBAHHBIX TEOPEM O B3AMMO-
OTHOILEHHH PETYIRPHBIX HHICPBANBHBIX MATPHIl B P-Ma1pHIL.
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