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RoOHN, J.
Real Eigenvalues of an Interval Matrix with Rank One Radius

In this paper, we are concerned with eigenvalues and eigenvectors of an n x n interval matrix 4' = {4; 4, — 4 £ A<
< A, + 4}, where the radius 4 is of the form 4 = gp, q and p being column vectors, ¢ = 0, p > 0. As it will be seen,
this special case allows for rather explicit results. We will be interested only in real eigenvalues since the complex case
seemingly cannot be handled by the method used.

For an interval matrix in the above form we shall consider the set of real eigenvalues

L= {AeR'; Ax = Ix, Ae A", x % 0}
and for each 4 e R! the set of eigenvectors
X; = {x;Ax = ix, Ae A", x + 0} .

We shall first give a description of the X,’s, then, using the fact that 2 e Liff X; & @, we shall derive a necessary and
sufficient condition for a given 4 € R* to belong to L. Notation: with the above vector p > 0 we associate the norm

Ixll, = ¥, pidxy, and for a vector x = (x,) we define its absolute value by [x| = (x;); let e = (1,1, ...,1)". Fora te R, we
i

denote by D, the diagonal matrix with diagonal vector t; E = D, is the unit matrix.
Theorem 1: Let A € R*. Then there holds

X

[l

X, ={x; —g 5 (4. — AB) £q.x+0}. ®

Proof: Let x€ X, i.e. Ax = Ax for some 4 € A" and x # 0. Then
(4, — AE) x| = (4 — AE}x + (A, — A X} < |4, — Al |x| £ qp"lx] = lIx[, q,
hence —g < (A, — AE) —
I,

Define a vector t € R" by

< q. Conversely, if the last inequality holds for some x # 0, then |(4, — AE) x| £ qp"|x|.

t; = (A, — AE) x);/(gp"|x]); if (gp"lx]) # 0 and t;, =1 otherwise (i=1,...,n);
then (4, — AE) x = D,gp"|x}. Let z be the signature vector of x (ie. z; = 1if x; 2 O and z; = —1if x; < 0), then |x] = D.x,
so that (4, — D,gp"D,) x = Ax. Since |t| £ e, we have |Dgp'D,} < qp", hence 4, — Dgp'D, € A, implying xe X,. B
We shall now give a necessary and sufficient condition for a given A to belong to L. Denote Y = {y € R"; [y = e},
i.e. the set of all £+ 1-vectors.
Theorem 2: Let A€ R* be not an eigenvalue of A,. Then A e Lif and only if it satisfies
(4. — AE)™* Doyl = 1 2

for some ye Y.
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Proof: Let Ae Land let 1 be not an eigenvalue of A, Then X, + 0, hence in view of Theorem 1 there exists a
vector x with || x|, = 1 such that (4, — AE)x = t, |t| £ 4. Let j be a vector from Yat which |(4, — AE)™! Dy|l, achieves
its maximum over Y. Then from the convexity of the norm we obtain

1= lxll, = (A~ 2E)" " tl, £ WA, — AE)™* D.gll,,

which proves (2). Conversely, let (2) hold. Put x = (4, — AE)"! Dy, then |(4, —AE) x| = g and |||, Z 1, hence the vector
xqo = x/||x|, satisfies |(4, — AE) x| £ 4,]%oll, = 1,50 that Theorem 1 assures X ; to be nonempty, which means that i € L. Bl

This result shows that the test whether A € Lcan be in principle performed by finite means, but actually the amount
of computation needed may be too large since Y consists of 2" elements. Nevertheless, we shall use this characterization
for a full description of Lunder some additional assumptions (A 1), (A2), (A3), which we shall first discuss in some detail.
First we shall assume that

(A1) Each A € A" has m simple real eigenvalues A,(4) < Ay(A) < ... < A,,(A), where m is constant over AL

Based on this assumption, we may define the sets L; = {/;(4); A€ A"}, i = 1, ..., m. Obviously, L= {J L. Next we
shall assume the Ls to satisfy !

A2) L~ L, = 0 for each i * j. :

According to (Al), both the eigenspace and the left eigenspace of each 4,(4) are one-dimensional. Denote by x;(4)
and m,(A) the unique cigenvector and left eigenvector, respectively, such that ||x(4)], = |7(4)], = | and whose first
nonzero entry is positive. We shall assume a signature constancy of these vectors:

(A3) For each i€ {1, ..., m} there exist z;, y; € Y such that D, x,(A) > 0, D, m,(4) > O for each Ae A"

We shall now show that under these assumptions each L; can be described explicitly.

Theorem 3: Letq > 0, p > Oandlet (A1),(A2),(A3) hold. Then for eachi€ {1, ..., m} we have L; = [4;, %], where
4 = min {2(4. — B), 4(A. + By}, # = max {4,(4. — B}, 2(4. + B)}
with B, = D, qp'D,..

Proof: Letie {1, ...,m}. From (A2) it follows that L; is compact. Since gp” > 0, we have that 1,(4,) belongs to L?,
the interior of L. Let AedL; = L; — LY. Then i + 4(A4,), hence according to Theorem 2 there exists a y e Y with
1A, — AE)"* D,yll, 2 L. If this inequality were sharp, we would have 1¢ LY, a contradiction. Hence [|(4, — 1E)™' x
xDyyll, = 1. Denote x = (4, —AE)™! D,y and let z be the signature vector of x. Thenp™D,x = land (4, — AE)x = D,y =
= D,gp"D,x, hence

(4. — Dygp™D,)x = Ax, @)

which means that x is an eigenvector corresponding to 4, hence its signature vector z must be equal to z; or —z; according
to (A3). Further, let © = (A] — AE)™! D.p, then n'D,y = [[(4, — AE)" D y|l, = 1. If there were n;y; < O for some j, then
defining y° by y9 = —y; and y{ = y, otherwise, we would have [[(4, — 2E)"" D,y°ll, = n'D,y° > 1 implying A ¢ LY, a
contradiction. Hence n;y; 2 0 for each j and from (4] — AE)n = D,p = D,pq"' D, We obtain (4, — Dyp™D) n = in,
thus 7 is a left eigenvector and its signature vector y must be equal to y; or —y;. Thus we obtain from (4) that either
A=21(4, — D,qp'D,), or 2 = A4, + D,qp™D.). We have proved that L, is compact, has a nonempty interior and two
boundary points. Thus L; is a compact interval whose endpoints are the two boundary points, which proves (3). B

A special case of Theorem 3 for A' symmetric (p = q) was proved in [2]. While working on this problem, I received
the preprint {1] by A. Der where Theorem 3 was proved under other assumptions and by another method; the results
presented here were achieved independently of it.
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