## A SHORT PROOF OF FINITENESS OF MURTY'S PRINCIPAL PIVOTING ALGORITHM

## Jiri ROHN

Faculty of Mathematics and Physics, Charles University, Malostranske nam. 25, 118 00 Prague, Czechoslovakia

Received 22 February 1988 Revised manuscript received 18 July 1988

We give a short proof of the finiteness of Murty's principal pivoting algorithm for solving the linear complementarity problem y = Mz + q,  $y^Tz = 0$ ,  $y \ge 0$ ,  $z \ge 0$  with P-matrix M.

Key words: Linear complementarity problem, P-matrix.

Murty proposed in [2] a principal pivoting algorithm for solving a linear complementarity problem

$$y = Mz + q, (1)$$

$$y^{\mathsf{T}}z = 0, (2)$$

$$y \ge 0, \quad z \ge 0, \tag{3}$$

with an  $n \times n$  P-matrix M. The algorithm starts with y = q, z = 0 and in the subsequent steps maintains (1) and (2) while working toward reaching (3). At each step, exactly one of the variables  $y_j$ ,  $z_j$  is in the basis for  $j = 1, \ldots, n$ . If in the current step the updated right-hand side vector  $\bar{q}$  is not nonnegative, we compute

$$k = \min\{j; \, \bar{q}_i < 0\} \tag{4}$$

and introduce into basis the nonbasic variable in the pair  $y_k$ ,  $z_k$ , with pivot in the kth row. Murty showed in [2] that if M is a P-matrix, then the pivot choice is correct (the pivot is then nonzero due to Tucker's result [4]) and proved that after a finite number of steps  $\bar{q}$  becomes nonnegative and the algorithm terminates with a solution to (1)-(3). We shall reprove here the finiteness of his algorithm using this auxiliary result:

**Lemma.** Let M be a P-matrix and let  $(y^1, z^1)$  and  $(y^2, z^2)$  satisfy  $(1), (2), (y^1, z^1) \neq (y^2, z^2)$ . Then there exists an  $i \in \{1, ..., n\}$  such that

$$y_i^1 z_i^2 < 0 \quad or \quad y_i^2 z_i^1 < 0$$
 (5)

holds.

**Proof.** From  $y^1 = Mz^1 + q$ ,  $y^2 = Mz^2 + q$  it follows that  $y^1 - y^2 = M(z^1 - z^2)$  and  $z^1 \neq z^2$  (otherwise  $(y^1, z^1) = (y^2, z^2)$ ); hence, due to a characterization of *P*-matrices by Fiedler and Pták [1], there exists an  $i \in \{1, ..., n\}$  with  $(y_i^1 - y_i^2)(z_i^1 - z_i^2) > 0$ . But, from (2), we have  $(y_i^1 - y_i^2)(z_i^1 - z_i^2) = -y_i^1 z_i^2 - y_i^2 z_i^1$ , whence (5) holds.  $\square$ 

**Theorem.** Let M be a P-matrix. Then each  $k \in \{1, ..., n\}$  can be chosen by rule (4) at most  $2^{n-k}$  times during the algorithm. Hence Murty's algorithm is finite, giving the unique solution to (1)-(3) in at most  $2^n - 1$  steps.

**Proof.** We shall prove the assertion by induction on k = n, n - 1, ..., 1.

Case k = n. Assume n appears at least twice in the sequence of k's and let  $(y^1, z^1)$ ,  $(y^2, z^2)$  be the solutions corresponding to its first and second appearance, respectively. Then  $y_i^1 z_i^2 \ge 0$ ,  $y_i^2 z_i^1 \ge 0$  for each i < n by (4) and one of the numbers  $y_n^1 z_n^2$ ,  $y_n^2 z_n^1$  is positive, while the second one is zero. Hence  $y_i^1 z_i^2 \ge 0$ ,  $y_i^2 z_i^1 \ge 0$  for each  $i = 1, \ldots, n$ , contradicting the lemma.

Case k < n. Consider any two consecutive appearances of k in the sequence and let  $(y^1, z^1)$ ,  $(y^2, z^2)$  be the respective solutions. Then  $(y^1, z^1) \neq (y^2, z^2)$  and arguing as above, we get that  $y_i^1 z_i^2 \ge 0$ ,  $y_i^2 z_i^1 \ge 0$  for each  $i \le k$ . Hence, according to the lemma, there exists an i > k such that (5) holds, which means that the variable  $y_i$  is basic in one of the solutions  $(y^1, z^1)$ ,  $(y^2, z^2)$  while  $z_i$  is basic in the second one of them, implying that this i, i > k, must have been chosen by rule (4) in some of the pivot steps between the two appearances of k. This shows, in view of the inductive assumption, that k cannot appear more than  $\sum_{i=k+1}^n 2^{n-i} + 1 = 2^{n-k}$  times, which concludes the inductive proof. Hence the algorithm is finite and cannot take more than  $\sum_{k=1}^n 2^{n-k} = 2^n - 1$  steps. The obtained solution to (1)-(3) is unique since the existence of another solution would contradict (3) in view of (5).  $\square$ 

Note that in [3] Murty constructed for any  $n \ge 1$  an LCP of size n for which the algorithm takes exactly  $2^n - 1$  steps.

## References

- M. Fiedler and V. Pták, "On matrices with non-positive off-diagonal elements and positive principal minors," Czechoslovak Mathematical Journal 12 (1962) 382-400.
- [2] K.G. Murty, "Note on a Bard-type scheme for solving the complementarity problem," Opsearch 11 (1974) 123-130.
- [3] K.G. Murty, "Computational complexity of complementary pivot methods," *Mathematical Programming Study* 7 (1978) 61-73.
- [4] A.W. Tucker, "Principal pivotal transforms of square matrices," SIAM Review 5 (1963) 305.