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We give a short proof of the finiteness of Murty’s principal pivoting algorithm for solving the
linear complementarity problem y=Mz+gq, yTz=0, y=0, z=0 with P-matrix M.
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Murty proposed in [2] a principal pivoting algorithm for solving a linear complemen-
tarity problem

y=Mz+tgq, (1)
y'z=0, (2)
y=0, z=0, (3)

with an n X n P-matrix M. The algorithm starts with y = g, z = 0 and in the subsequent
steps maintains (1) and (2) while working toward reaching (3). At each step, exactly
one of the variables y;, z; is in the basis for j=1,..., n. If in the current step the
updated right-hand side vector § is not nonnegative, we compute

k =min{j; g, <0} (4)

and introduce into basis the nonbasic variable in the pair y,, z,, with pivot in the
kth row. Murty showed in [2] that if M is a P-matrix, then the pivot choice is
correct (the pivot is then nonzero due to Tucker’s result [4]) and proved that after
a finite number of steps g becomes nonnegative and the algorithm terminates with
a solution to (1)-(3). We shall reprove here the finiteness of his algorithm using
this auxiliary result:

Lemma. Let M be a P-matrix and let (y', z") and (y°, 2°) satisfy (1), (2), (»', z") #
(y*, 2%). Then there exists an i {1, ..., n} such that
yizZ<0 or ylzl<o (5)

holds.
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Proof. From y' = Mz'+gq, y° = Mz’ + q it follows that y' —y’=M(z' —z°) and z' #
2% (otherwise (y', z') = (¥°, z%)); hence, due to a characterization of P-matrices by
Fiedler and Ptik [1], there exists an i€ {1,..., n} with (y:—y))(z} —z7)>0. But,
from (2), we have (y! ~y?)(z] —zi) = —ylzi— yiz!, whence (5) holds. O

Theorem. Let M be a P-matrix. Then each k<{1,...,n} can be chosen by rule (4)
at most 2" % times during the algorithm. Hence Murty’s algorithm is finite, giving the
unique solution to (1)-(3) in at most 2" —1 steps.

Proof. We shall prove the assertion by induction on k=n,n-1,...,1.

Case k = n. Assume n appears at least twice in the sequence of k’s and let (y', z'),
(y%, z°) be the solutions corresponding to its first and second appearance, respec-
tively. Then y!z?=0, y?z!=0 for each i <n by (4) and one of the numbers y)z;,
y2z! is positive, while the second one is zero. Hence y;z; =0, yiz! =0 for each
i=1,...,n, contradicting the lemma.

Case k < n. Consider any two consecutive appearances of k in the sequence and
let (¥, zY), (%, z°) be the respective solutions. Then (y', z') # (¥*, z°) and arguing
as above, we get that y;z; >0, y7z; > 0 for each i < k. Hence, according to the lemma,
there exists an i > k such that (5) holds, which means that the variable y; is basic
in one of the solutions (y', z"), (¥%, z°) while z; is basic in the second one of them,
implying that this i, i > k, must have been chosen by rule (4) in some of the pivot
steps between the two appearances of k. This shows, in view of the inductive
assumption, that k cannot appear more than Y|, ,, 2"7'+1=2""% times, which
concludes the inductive proof. Hence the algorithm is finite and cannot take more
than ¥;_, 2" *=2"—1 steps. The obtained solution to (1)-(3) is unique since the
existence of another solution would contradict (3) in view of (5). O

Note that in [3] Murty constructed for any n=1 an LCP of size n for which the
algorithm takes exactly 2" —1 steps.
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