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Abstract — Zusammenfassung

A Farkas-Type Theovem for Linear Interval Equations. We give a Farkas-type necessary and sufficient
condition for a system of linear interval equations to have a nonnegative solution, and derive a
consequence of it.
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Ein Satz von Farkasschen Type fiir lineare Intervallgleichungssysteme. Notwendige und hinreichende
Bedingungen fir die Existenz einer nichtnegativen Losung cines linearen Intervallgleichungssystems
werden angegeben.

The classical Farkas theorem says that a system of linear equations Ax = b has a
nonnegative solution if and only if for each y, A"y > Oimplies b7y > 0. Tn this short
note, we give an interval version of this theorem. The result was already stated in
[2], where, however, its actual meaning was hidden under a burdensome notation
and was proved in a rather complicated manner via the duality theorem of interval
linear programming. Here, we restate the theorem in a more compact form, give a
simple proof of it and derive a consequence showing an interesting property of linear
interval systems.

Let A, A be two m x n matrices satisfying 4 < 4 and b, b two vectors in R™ with
b < b. We introduce the interval matrix A’ = {4;4 < A < A} and the interval
vector bT = {b;b < b < b}. A vector x € R"is called a solution of the system of linear
interval equations

Alx = b’ (M

if it satisfies Ax = b for some 4 € A, b € b'. We shall be interested in nonnegative
solutions of (1), i.e. solutions satisfying x > 0. The following theorem gives a Farkas-
type necessary and sufficient condition for the system (1) to have a nonnegative
solution; notice the difference in quantifiers:

Theorem 1. A system (1) has a nonnegative solution if and only if there holds
(Vy)(ATy = O for each A € A'=>b"y > 0 for some b € b") (2)
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Proof. (i) To prove the “only if” part, assume that A;x = by, x = 0 holds for some
Ag € A', by e b'. Then, if a vector y satisfies A"y > 0 for cach A € A, then also
ATy > 0, hence bJy > 0 due to the Farkas theorem applied to the system Ay x = by,
which proves (2).

(ii) Conversely, assume (2) to be satisfied. We shall first show that then therc holds
(Vyy = 0)(Vy, = 0)(ATy, — A_T,VZ >0=>b"y, — by, 20). (3)

In fact, let ATy, — ATy, = 0 for some y, >0, y, > 0. Then for each 4 with
A<A<A we have ATy, < ATy, and ATy, < ATy,, hence AT(y, —y,) =
ATy, — ATy, > 0. Now (2) implies existence of a b, € b’ such that by (y, — y2) = 0.
Since b < b, < b, from nonnegativity of both y; and y, we obtain that by, < bly,
and bly, < bTy,, implying by, — by, = b{(y, — y,) = 0, which completes the
proof of (3).

Now, (3) can be easily checked to be the Farkas condition for the system of linear
inequalities

—Ax< b )

to have a solution (introducing slack variables to (4) in order to bring it to a system
of linear equations provides for nonnegativity of y,, y, in (3)). But it follows from
the result by Oettli and Prager in [1] that the system (4) describes the set of

nonnegative solutions to (1), which is thus nonempty, and the proof is complete.
[ |

As a consequence, we obtain the following result.

Theorem 2. A system (1) does not have a nonnegative solution if and only if there
exists a y € R™ such that the equation

yTAx = yTb (5)
does not have a nonnegative solution for any A € A, b e b

Proof. Only if”: Assuming that (1) does not have a nonnegative solution, we obtain
from Theorem 1 that there exists a y € R™ such that for each 4 € A’ and be b’
there holds ATy = 0, b*y < 0, hence (5) cannot have a nonnegative solution since
in such a case the left-hand side in (5) were nonnegative while the right-hand one is
strictly negative.

If”: Suppose (1) has a nonnegative solution x, ie. Agx = b, for some A, € Al
b, € b'. Then yTA,x = yTh,, hence (5) has a nonnegative solution, which is a
contradiction. [ ]

Of course, Theorem 1 is only of theoretical interest. In practice, checking for a
nonnegative solution of (1) may be performed by verifying that the system of linear
inequalities (4) has a solution, which may be done e.g. by phase I of the simplex
algorithm. In case of nonexistence of a nonnegative solution, the vector y from
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Theorem 2 can be computed simply as y = y¥ — y%, where y¥, y¥ is an optimal
solution of the linear programming problem

min{b"y, — b7y A"y, — A"y, 20,0<y, <0<y, <e} (6)

where e is the vector of all units. In fact, we know already that in this case there exist
y1 =0, y, > 0 such that ATy, — ATy, >0, b7y, — b7y, < 0 hold. By norming
V1, ¥, if necessary, we may assume them to satisfy 0 < y, <e, 0 <y, <e. These
constraints assure that (6) has an optimal solution y¥, y¥ satisfying

AT(y¥ —y5) 2 ATyt — ATy* >0  foreach A e A’
and

bT(y¥ —yH) <bTy¥ —bTy5 <0  foreachbeb’,
so that y = y¥ — y3 is the vector wanted.

In this note, we were interested in conditions for some system Ax = b with A ¢ A7,
be b’ to have a nonnegative solution. The system (1) can be also studied from
another point of view, asking for conditions under which each system Ax = b with
A € A", b e b has a nonnegative solution. Such conditions were given in [3].
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