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Abstract.

We give necessary and sufficient conditions for the solution set of a system of linear interval equations
to be nonconvex and derive some consequences.
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1. Introduction.

Since the early 1960’s the problem of uncertainties in the data in systems of linear
equations has been studied with the help of linear interval equations. These linear
interval equations arise in a natural manner when it is assumed that the coefficients
and the right hand sides of a linear system A,x = b, are enclosed in intervals which
are assumed to be mutually independent. Instead of the original system one is
therefore led to consider the system of linear interval equations

(1 Alx = b

where AT ={A4;4, —A< A< A +4} is an nxn interval matrix and
b! = {b;b. — 8 < b < b, + 8} is an interval vector; here A, is the center of A’, b, the
center of b’ and the radius matrix A as well as the radius vector § are nonnegative.
The solution set X is defined as the solution range over the intervals, that is,

X ={x;Ax=b,AcA',beb’}

because of the assumption of the independence of the coefficients. 1t is easy to give
examples of solution sets that are nonconvex. Even so it was shown by Oettli and
Prager [7] that the solution set can be characterized in a surprisingly simple
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manner. They showed that for arbitrary A’, b’ the set X can be described by
(2 X = {x|4.x — b| < 4|x| + &}

where |x|, the absolute value of x, is defined by |x|; = |x;| (i = 1,...,n). The source of
the nonconvexity of X is the term |x| appearing on the right hand side of the
inequality in (2). The nonconvexity disappears, however, when X is entirely con-
tained in an orthant since it was observed by Oettli [6] that the intersection of
X with each orthant is a convex polytope. Some nice examples illustrating the
(sometimes complicated) structure of the solution set X are given e.g. in [1], [3], [4],
[5], and further discussions and results on linear interval systems can be found in
Alefeld and Herzberger [10].

In this paper we will give a necessary and sufficient condition for X to be
nonconvex (Theorem 2 below) as well as some of the consequences of the condition.
One of the consequences is that if X is convex, if the radius matrix 4 is positive and if
a rather weak additional condition is satisfied, then X is already included in a single
orthant (Corollary 2). This result is almost a converse of the assertion by Oettli
quoted above.

2. Main result,

We begin with some notations. Denote Y = {ye R" |y;| = 1 for each j}, so that
Y consists of 2" vectors. For each ye Y, let T, = diag{y,,..., y,} denote the diagonal
matrix with diagonal vector y. Qur characterization of nonconvexity of X will be
based on the following convex hull theorem proved in [9]; a square interval matrix
A'is called regular if each 4 € A' is nonsingular.

THEOREM 1: Let A" be regular. Then for each y € Y, the nonlinear equation
3) Ax = b, = T(dlx| + 9)
has exactly one solution x,, x,€ X, and there holds
(4) Conv X = Conv{x,;ye Y}
A general finite method for computing x, for‘a given ye Y was given in [9]. Here

we shall use the vectors x, to characterize nonconvexity:

THEOREM 2: Let A! be aregular n x n interval matrix. Then the solution set X of (1)
is nonconvex if and only if there exist y, ze Y and i,je{l,...,n} such that y; = z,,
(x,)i(x.); <0and 4; > 0.

PROOF: (a) We shall first prove the “if” part. Assuming that y, z, i and j with the
properties listed exist, take real numbers 4 > 0, u >0 with A+ =1 and put
x = Ax, + px,. Then |x|; < Alx,l; + plx.l;, while |xl, < Alx e+ ulx,|, for each
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k # j. Since x, and x, satisfy
(Aex, = b))y = yi(41x,] + d)
(Aex; — bo)y = z(A |x;| + 8); = yil4|x,| + J);
due to (3), we obtain, using the positivity of 4;;, that
[4,x = bl = (A2 1x,] + lx,]) + 8) > (A]x] + 8);,

which in view of (2) means that x ¢ X. Since x,, x, € X and x belongs to the scgment
connecting them, we conclude that X is nonconvex.

(b) To prove the “only if” part of the theorem, assume on the contrary that for
each y,ze Yandeachi,je{l,...,n},y; = z;and 4;; > 0imply (x,),(x.); = 0. We shall
prove that in this case each convex combination of vectors x, belongs to X. This, in
the light of (4), will imply that ConvX < X, proving that X is convex. So let

x =Y Ax, where 1,,yeY, are nonnegative real numbers satisfying ) 4, = L.
yeY yev
Then from (3) we have

(Acx - bc)i = Z "’{y(Acxy - bc)i = Z )‘yyl(A Ixyl + (S)i

yeY ye¥
=) Aij(z Ay |xy|j> + 2 Ayidi
i=1 ye¥ yeY

and using our assumption that y; = z; and 4;; > 0 imply (x,),(x,); = 0, we obtain

2 AyXy ) Y Ax, ) + 2 AVl
1

yeY Jj yeY yeyY
yi=1 yi=—1

(A‘.X - bc)l' = Z Aij(
j=1
Taking absolute values we have

lA.x — bl € z Aij
i=1

z A'yx}'

yeY

A=A+,
for each i€ {1,...,n} and hence |4.x — b,| < 41x| + 8. This implies x € X in view of
(2), and hence ConvX < X. |
3. Consequences
First, from the proof of Theorem 2 we obtain:
CoROLLARY 1: Let A! be regular. Then X is nonconvex if and only if there exist

y,z€ Y withy # —z and x, # x. such that no point of the segment connecting x, with
X,, except the endpoints, belongs to X.
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PrOOF: The “if” part is obvious. Conversely, if X is nonconvex, there exist y, z, i, j
such that y;, = z;, (x),(x,); < 0 and 4,; > 0 and according to part (a) of the proof of
Th. 2,no point of the form Ax, + ux_, A > 0,4 > 0,4 + u = 1,belongs to X. ]

Next theorem explains the reason for the condition y # —z in Corollary 1:

THEOREM 3: Let A! be regular. Then for each y € Y, the whole segment connecting X,
with x_, belongs to X.

PRrOOF: Let ye Yand let x = Ax, + pux_,forsome A 20,4 2 0,4 + p = 1. Then
from (3) we get |4, x — b | = |T(A(|Ax,| — |lux_,]) + (A — wd)| < A|x| + &;
hence x € X according to (2). | ’

We shall now turn to a special case of interval matrices
Al ={A;A. - A< A< A + 4}

satisfying 4 > 0(componentwise); they are sometimes called thick interval matrices.
Here the situation becomes more clear:

THEOREM 4: Let A" be a regular interval matrix satisfying 4 > 0. Then X is
nonconvex if and only if there exist y,ze Y, y # — z, such that (x,),(x.); < 0 for some
jef{l,... n}.

PROOF: The “only if” assertion follows directly from Theorem 2. Conversely, if
(x,);(x;); < O for some y,ze Y, y # —z, then there exists an i with y; = z; and since
4;; > 0, Theorem 2 applies. ]

In the introductory section we quoted Qettli’s result stating that if X is part of one
orthant, then X is convex. We shall now show that under additional assumptions
this result can also be reversed:

COROLLARY 2: Let A! be reqular with A > 0, let X be convex and let there exist
aye Y suchthat both x,and x _ , belong to the same orthant and at least one of them has

all entries nonzero. Then X is part of a single orthant.

PROOF: Assume (hat all entries of x, are nonzero. Since X is convex, it follows from

Theorem 4 that for each ze Y, z # —y, there holds (x,);(x,); = O for each j, so that '
each such x_ belongs to the same orthant as x,. Since this is also true for the »
remaining vector x _, due to the assumption, we obtain from Theorem 1, Eq. (4) that [
the whole solution set X is also part of that very orthant. n. R

In fact, without our additional assumptions, even in the case 4 > 0 the solution set
X can be convex and still intersect all the orthants, as the following example shows:
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L5 15 05 05
E B 1. A, = A=
xampre:let A, (1.5 —1,5)’ (0.5 0.5)

and b, = (0,0)7, 5 = (1,1)T. Then the solution set X of (1) is the square with vertices
(150)T9 (0’ 1)T’ (_ lsO)Te (Os - I)T

S mmrny, -

In the last theorem we give another property of the solution set X, valid, however,
only in the case d = 0(i.e. when the right hand side in (1) reduces to one vector). For
s any z € Y, let us call the orthants {x; z;x; = 0 for each j} and {x;z;x; < 0 for each j}
opposite.

THEOREM 5: Let AT be regular and let b # 0. Then the solution set of the interval
linear system A'x = b cannot intersect simultaneously two opposite orthants.

PROOF: Let x;, x,€ X, so that A;x; = b, A,x, = b for some A, A, A'. Then
x, = A7 A,x, and x, # O0due to b # 0. Since A' is regular, A, ' A, is a P-matrix, as
proved in[9], Theorem 1.2, and from the well-known characterization of P-matrices
by Fiedler and Ptak [2] we obtain that there exists a je{l,....n} such that
{x1);(x,); > 0. Hence x, and x, cannot belong to two opposite orthants. |

A preliminary version of this paper appeared in [8].
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