LINEAR INTERVAL EQUATIONS:
ENCLOSING AND NONSINGULARITY

J. Rohn, Prague

following property: a convex set encloses the solution set of
a system of linear interval equations if and only if it intexr-
sects all these polytopes. The result 1s applied to derive ne-
cessary and sufficient nonsingularity conditions for interval
matrices.

1, Enclosing the solution set

For a linear interval system
AIx = bI

where Al - {A; A, -4 % ASA, + A} 1s an nxn interval matrix and
vl = {b; b, - d < b<b, + J‘} is an interval n-veetor (4a>0, J\a o),
the solution set is defined by |

X= {x; &x = v, aea’, vevl} .
Since X is generally a nonconvex set difficult to work with (6] ,
numerous ingenious methods were invented (see e.g. survey paper [21)

I

for eﬂclosing the solution set X, i.,e. for finding an interval vec-
tor xI such that XCx™ holds., This paper is aimed at giving some

necessary and sufficient conditions x' must satlsfy to enclose X,
but the conditions are difficult to verify and therefore are rather
of theoretical interest.

It is well-known [3] that the solution set X can be equivalently

described as

X = {x; ‘Acx - bclﬁAlxl "’J}
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where, for x = (xy), |x| is defined by x| = ((xi]) . Define fur-
ther Y = {y€ R%; lyjl = 1 for each j} and for each y€Y, let T,
denote the diagonal matrix with diagonal vector y. We shall be
interested here with the sets
Py = {3 T,(Ap - Do) > Alp| + 8}

for all y€Y (so that there are 2% of them). We shall show later
that the sets Py are closely related to the problem of enclosing X.
First we shall state some properties of the Py’s.

We shall assume AI to be regular (i.e., each AéAI to be non-

I

singular). In. [5] we proved that if A” is regular, then for each

y€Y, the nonlinear equation
T (Agx = bg) = Alxl + Jd

has a unique solution xy which belongs to X, and clearly also to P
I

yl
Hence, if A
Xn Py = {_xy} . In the next proposition we show that the absolute

is regular, then Py £ @ for each y& Y; moreover,

value can be removed from the description of Py:
Proposition 1. Let y&Y. Then a vector p belongs to Py if and
only if it satisfies the system

Ty(AcP - bo) >4a +d
“g<£p<q

@

for some q& RE.

Broof. If pEP,, then g = |pl satisfies (1) . Conversely, if p

and q satisfy (1) , then |p| £q, hence Ty(Acp - bc) 2 Agq +§%A“ﬂ[ +J)

s0 that P _.
re y

With the help of this description, we can clarify the structure

fP:
o Yy



T be regular and 4 £ 0. Then for each yE€Y,

T e e s e e

Py is an unbounded convex polytope and xy is a vertex of 1it.

Proof, (’a) Py 1s a convex polytope: According to Proposition 1,
Py is the p-projection of the solution set of (1) , which is a

convex polytope; hence so is Py‘

(b) Py is unbounded: In (5] , Theorem 5.1, we proved that if Al

ig regular, then for each y€Y there exists a positive vector Ty
such that [A;'lTyAryl <1, holds. For an arbitrary solution (psq)
of (1) consider the half-ray
=1
(psa) +X (Ag'T, A7) (2
for A2 0, For each such a A , we have
-1
T, (A(P + AAg TyAry) - b,) = T, (Agp - b,) + >\Ary
2Aaq+d + NAr =A(a+ Ar)) + d
y y
and
-1 -1
lp + >\Ac TyAryfé el + XA, TyAry' £q+ >\ry:
hence the half-ray (2), A20, belongs to the solution set of (1)
so that the half-ray {p + %AngyAry; A> 0} is a part of Py'
Since A # 0 and ry> 0, we have that AngyAry £ 0, hence P_ is

y
unbounded.
(c) x, is a vertex of Py: Assume for contrary that x, = % (pl + Py)

for some P1sPo€Ry, Py £ P,. Then we have

Al + & = (A%, =v)> AG(Iey) + Ip,l) + >ax| +J
which shows that T (Acey = by) = Alpy] + 3 » T (AP, - b)=
= Alp,| + J holds, hence p; = p, = x, due to the unigueness
of solution of the equation Ty(Acx - bc) = Alx| +d stated above,
which contradicts our assumption that P £ Poe.

This concludes the proof.
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Next we shall investigate conditions under which the sets Py’

y&€Y, are mutually disjoint:

Proposition 2. Let y,z&€ Y. Then, a vector p belongs to PyﬂPz

if and only if it satisfies
.Vj(Acp = bc)j > (A]pl + cf)j for each j with yj‘ =z
(ACP - bc)j = (Alp| + d\)j = 0 for each j with Yy = "2ye

Proof, The *?if*’ part is obvious., Conversely, if pe& Pyn Pys
then for each j with yy = ~z; We have yj(Acp - bc)j >
>(Alp) + 6)32 0 and zj(Acp - bc)j = -yj(Acp - bc)j;
2(Alp] -4-6\) 3 > 0, hence (Acp - bc)j = 0 and consequently
(Alpl +d) = o.
Corollary. Let elther of the two conditions hold:
(&) &>o,
(v) A> 0 and ]bcl > 0.
Then all the sets Py, y&€Y, are mutually disjoint.

¥ £ z4, hence (Alpl + d\)j = 0 and (Acp)j = (bc)j due to Propo=-
sition 2. However, each of the conditions (a), (b) guarantees that
Alpl + d>0foreach 04pe€ R, which is a contradiction,

Broof, Assume pEP NP, ¥ £ z. Then there exists a j with




We shall now approach the problem of enclosing the solution
set X. We shall flrst formulate (also for purposes of section 2)
this more general statement in which regularity of AI is not

assumed:

Proposition 3. Let Py eP for each y€Y. Then for each AGA
and bebI, the equation Ax = b has a solution which belongs

to Gonv{py; yEY} .

will suffice to prove that
T Ap, > Ty )

holds for each yE€Y and each AGA 5 beb since the theorem states
that in such a case Ax = b has a solution belonging to Conv {py; y& Y}.
To prove (3) , let us write

T (Apy - b) = T (Ap, - ve) + T [ - a)p, + (b - v)]
Since

|7, [(A - A)p, + (v, - ®))| € Alny] +d,
we have

T,(Apy - ©) 3 T (AR, - D) - (Al + d)2o
(since Py € Py), hence (3) holds and the proof is complete.,

Qur main result concerning enclosing the solution set X can be

formulated as follows:

solution set X (i.e., XC C) if and only if
CNAP, £ 4 €Y
holds for each y&Y.

Proof. **Only if?’; Since AL is regular and XCC, we have

xye Xr\PyC CﬁPy for each yeY. ??If?’: Conversely, let (4) hold



for each y&Y, Take a pye Cr\Py for each y. Due to Proposition 3,
for each AEAY, bEbY the unique solution of the equation Ax =D
belongs to Conv {py; Y€ Y}. Hence we have

X C Conv {py; yeY}C ¢,

so that C encloses X.

In the special case of C = xt ‘we get a criterion for interval
enclosures,
According to Proposition 3, a convex enclosure of the (generally

nonconvex) set X can be constructed by picking a pyé Py for each

enclosure xI = [}5,;:] can be given by

min {(Py)if yEY)

max {(p,)13 vE€ V).

This, however, is a merely theoretical possibility since Y consists

i}

Xy

1

Xy

of 2% elements and generally finding a pyé Py is also not an easy
task. Therefore we shall not pursue these ideas any further and
instead we shall be interested in the second section in using an
analogue of the sets Py to formulate some necessary and sufficient

regularity conditions for interval matrices.

- e e W S e —— e s . s o

For a square interval matrix Al - {Ac -4, A, + 4] we introduce
the sets

o .

Py = {ps T AP > Alol} )
(sharp inequality componentwise), y €Y. Elementary properties of

these sets are summed up in this
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Proposition_4. For an arbitrary square AI, the sets PO have

the following properties:
(1) P§ is an open convex cone,
(11) Pgnpg = & for y,zeY, y £ z,

o _ _p©
(111 Pl, = -, for each yE€ Y,

(iv) the number of nonempty P;'s is even.

_____ ; is open since the inequality in (5) is sharp;

convexity can be established either directly, or as in Theorem 1;
if péP; and o >0, then uLpeP; vy (5).

(i1) If y # 2z, then yj = -z for some j and for péP;ﬁPg we

3
would have yj(.llﬁcp)j > (A]p[)j > 0 and yj(Acp)j £ 0, a contradiction.

(iii) Obviously, if péP;, then -p ep‘_’y, nence Pﬁy = -P;.

(iv) Follows from (iii) since the nonempty sets can be grouped

. 0 0
into pairs Py, P—y

Now we have this regularity criterion:

vT = [-e, e] where e = (1,1,...,1)Té.Rn. According to the result

from (5] quoted in section 1, for each y&€Y the equation
T,(Ax = 0) = Alx| + e
has a solution x, which then satisfies TyAXy > A\xy[ , hence

]
P .
xye y

'9I£99; Let pyel’;, YEY, so that T A D, = A|p| > 0. Take

an arbitrary vector b&Rn, then there exists a positive real number
ol such that oC(TyAcpy - A[pyl) > T,b, hence Ty(Ac(g(,py) -1b)2
}-A[e{,pyl, so that ol,py belongs to the set P, from section 1 for
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the linear interval system Alx - (v, v]. Hence, due to Proposition 3,
the equation Ax = b has a solution for each AE.AI. Since b was
arbitrary, it follows that each AEAI is nonsingular, hence AI

is regular.

In accordance with Proposition 4, we can give this result also

the following form:

Theorem 4. A square interval matrix AL = (A, - a4, A, + Al is

e . e W e e

regular if and only if the solution set of the inequality
[Apl > Alrl (6

consists of exactly 21 mutually disjoint nonempty open convex cones.

Progf. Denote by P the solution set of (6) . Let p€P; put ¥4 =1
if (Acp)i> 0 and y; = -1 otherwise, then Ty(Acp)= |a.p| > Alpl
hence pé_P§, and conversely, if péP;, i.e. TyAcp > A4|p] , then
[a,p] = TyALP > Alp] , so that peP. Hence P = yLé{! P;.

70nly if?7: If AL ic regular, then P; £ @ by Theorem 3, hence
P is a union of 29 mutually disjoint nonempty convex cones P;, YEY.

12If7?; If P consists of 29 matually disjoint nonempty open con-
vex cones, then each such a cone must, due to its convexity, be a
part of some P;. On the other hand, since each P; is convex and thus
connected, it cannot be equal to a union of more disjoint nonempty

open comes than one. Hence each such a nonempty open convex cone

o]

is equal to some Py

. Thus P; £ @ for each y€Y and Al is regular
by Theorem 3.

1f Al is singular (by definition, not regular) , then the number
9C of nonempty cones forming the solution set of (6) is even (Propo-
sition 4) , but L <2%, The case of 9 = O is not excluded,
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In the printouts referred to in the examples to follow, an inter-

val matrix AI

the form AIx = 0, but this has nothing to do with linear systems.

in question is written, for technical reasons, in

Examples. The four open cones P§ for the regular interval matrix
from tke example by Barth and Nuding in section 1 are depicted in
Fig., 3. The structure of P is indeed regular here since the axes
of each two neighbouring cones form a 90° angle.

The sets P; for another regular matrix, forming, in the area
depicted, something like a Maltese cross, are shown on Fig. 4. This
example was included to demonstrate that a set P; does not necessarily
belong to a single orthant as it was the case in the }oregoing
example,

Fig. 5 deplects the case of a singular interval matrix where two
cones are empty (i.e. T = 2).

Finally, on Fig. 6 we have a situation where all four cones
vanish (% = 0), In this case the inequality (5) has the form

‘11‘>' 2|11|
x5l > 2lx,]

g0 that it does not have any solution,

The regularity criterion given in Theorem 3 is, of course,
hardly of use in practice, No easily verifiable necessary and
sufficient regularity condition is known to date, however, which
is explainable by a recently proved result (4] stating that the

problem of verifying regularity of an interval matrix is NP-complete.
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EXAMFLE
1, RERX (1) 4+ <3, 456X {2) = }
g, + \5,&;*x<h> = 5
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