On Singular Matrices Contained in an Interval Matrix

JIŘÍ ROHN

In this short note we investigate singular matrices contained in an interval matrix of a special form

(1)
$$A^{\mathbf{I}} = \{A; A_c - qp^{\mathbf{T}} \leq A \leq A_c + qp^{\mathbf{T}}\}$$

where A_c is an $n \times n$ matrix and q, p are n-dimensional column vectors, $q \ge 0$, p > 0 (the superscript "T" denotes transpose vector). We shall delineate a set S of matrices, $S \subset A^I$, such that each $B \in S$ is singular and if Ax = 0 for some $A \in A^I$, $x \ne 0$, then there exists a $B \in S$ such that Bx = 0.

First we introduce several notations. For $x = (x_i) \in R^n$, we denote $|x| = (|x_i|)$ and define its signature vector $\operatorname{sgn} x \in R^n$ by $(\operatorname{sgn} x)_i = 1$ if $x_i \ge 0$ and $(\operatorname{sgn} x)_i = -1$ otherwise (i = 1, ..., n). $D_x = \operatorname{diag} \{x_1, ..., x_n\}$ denotes the $n \times n$ diagonal matrix whose diagonal is formed by the components of the vector x. With the positive vector p from (1) we associate the scaled vector norm

$$||x||_p = p^{\mathrm{T}}|x| = \sum_i p_i|x_i|.$$

Let us now introduce the set of matrices

$$S = \{A_c - (A_c x) (\operatorname{sgn} x)^T D_p; -q \le A_c x \le q, ||x||_p = 1\}.$$

In the following theorem we sum up some properties of the set S from which it can be seen that S may in certain sense serve as a set of representatives of singular matrices from A^{I} :

Theorem. Let A_c be an $n \times n$ matrix, $q, p \in \mathbb{R}^n$, $q \ge 0, p > 0$. Then we have:

- (i) $S \subset A^I$,
- (ii) each $B \in S$ is singular,
- (iii) if Ax = 0 for some $A \in A^I$ and $x \neq 0$, then for $x_0 = x/||x||_p$ the matrix $B = A_c (A_c x_0) (\operatorname{sgn} x_0)^T D_p$ belongs to S and satisfies Bx = 0,
- (iv) $S \neq \emptyset$ if and only if A^I contains a singular matrix,
- (v) if A_c is nonsingular, then $S \neq \emptyset$ if and only if $||A_c^{-1}D_qy||_p \ge 1$ for some ± 1 -vector y,
- (vi) for each $B \in S$, the matrix $B A_c$ is of rank at most 1.
- (i) If $B \in S$, then $B = A_c (A_c x) (\operatorname{sgn} x)^T D_p$ for some x satisfying $-q \le A_c x \le q$ and $||x||_p = 1$, hence $|B A_c| = |(A_c x) (\operatorname{sgn} x)^T D_p| \le |A_c x| p^T \le q p^T$, thus $B \in A^I$ due to (1).

- (ii) For $B = A_c (A_c x) (\operatorname{sgn} x)^T D_p$ with $||x||_p = 1$ we have $Bx = A_c x (A_c x) (p^T |x|) = A_c x (A_c x) ||x||_p = 0$, hence B is singular.
- (iii) If Ax = 0 for some $A \in A^I$ and $x \neq 0$, then $|A_c x| = |(A_c A) x| \leq d p^T |x| = q ||x||_p$, hence $x_0 = x/||x||_p$ satisfies $-q \leq A_c x_0 \leq q$, $||x_0||_p = 1$ and for $B = A_c (A_c x_0) (\operatorname{sgn} x_0)^T D_p$ we have $B \in S$ and $Bx = ||x||_p Bx_0 = 0$ as proved in (ii).
 - (iv) The "if" part follows from (iii), the "only if" part from (i) and (ii).
- (v) Obviously, $S \neq \emptyset$ if and only if the system of inequalities $-q \leq A_c x \leq q$ has a solution satisfying $||x||_p = 1$. Let $S \neq \emptyset$ and let x be such a solution; put $t = A_c x$, then $x = A_c^{-1}t$, where $-q \leq t \leq q$, and from the convexity of the norm we have that $1 = ||x||_p = ||A_c^{-1}t||_p \leq \max\{||A_c^{-1}D_qy||_p; y \text{ is a } \pm 1\text{-vector}\}$ since each vertex of the box $\{t; -q \leq t \leq q\}$ is of the form $D_q y$ for some vector y whose each entry is equal to +1 or -1. Conversely, if $||A_c^{-1}D_qy||_p \geq 1$ for some such a vector y, then the vector $x = (A_c^{-1}D_q y)/||A_c^{-1}D_q y||_p$ satisfies $||A_c x|| \leq q$ and $||x||_p = 1$, hence $S \neq \emptyset$.
- (vi) For each $B \in S$ there holds $B A_c = -(A_c x)(\operatorname{sgn} x)^T D_p$ for some x. If $A_c x = 0$, then $B A_c$ is of rank 0, otherwise it is of rank 1. This concludes the proof.

The assertion (v) was proved in a slightly different manner in [2]. The proof was included here for completeness.

It follows from the assertion (iii) that each singular matrix $A \in A^I$ can be represented by the singular matrix $B = A_c - (A_c x) (\operatorname{sgn} x)^T D_p$ where x is a vector of unit norm satisfying Ax = 0 (notice that the matrix A itself is not used in the construction of B); hence the representation is unique if A has rank n - 1.

In a special case of interval matrices of the form

$$A^{I} = \left\{A; A_{c} - \beta e e^{\mathsf{T}} \le A \le A_{c} + \beta e e^{\mathsf{T}}\right\}$$

where $e = (1, 1, ..., 1)^T \in \mathbb{R}^n$, we obtain, with p = e and $q = \beta e$, this description of S (where the norm $||x||_e = \sum_i |x_i|$ is denoted, as usual, by $||x||_1$):

$$S = \{A_c - (A_c x) (\operatorname{sgn} x)^{\mathrm{T}}; -\beta e \le A_c x \le \beta e, ||x||_1 = 1\}.$$

Note, however, that even in this simple case testing whether $S \neq \emptyset$ (i.e. whether A^I contains a singular matrix) is an NP-complete problem; cf. [1].

References

- [1] Poljak, S., Rohn, J.: Radius of Nonsingularity, to appear.
- [2] Rohn, J.: Real Eigenvalues of an Interval Matrix with Rank One Radius, to appear in Zeitschrift für Angewandte Mathematik und Mechanik.

February 3, 1989.

RNDr. Jiří Rohn, CSc., Matematicko-fyzikální fakulta University Karlovy, Malostranské nám. 25, 118 00 Praha 1.

Resumé

O SINGULÁRNÍCH MATICÍCH OBSAŽENÝCH V INTERVALOVÉ MATICI

Jiří Rohn

Je uveden explicitní popis jisté podmnožiny množiny všech singulárních matic obsažených v dané intervalové matici.