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Abstract,

1t is shown that the bounds x and < of the exact interval solution (hull) of a system of linear interval
equations can be expanded into infinite series and some asymptotic conclusions are drawn.
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Let A'x =b' be a linear interval system with an »n x n interval matrix
A" =[A — A, A + A] and a right-hand side interval n-vector b’ = [b — ,b + §].
" The exact interval solution is defined as the narrowest interval [x, X] enclosing the
solution set X = {x; A'x’ = b, A’ e A, b eb'},ie. x = (x;), X = (X;) must satisfy

Xx; = min{x;;x'e X}
x;=max{x;xeX} (i=1...,n).

In this note, we shall show how the vectors x and X can be expanded into infinite
series. The result will be given under three assumptions (for B = (b;;) we denote
1B} = (Ib;)):

(i) A'isinversestable, i.c. [(4) | > Oforeach A’ € A’ (this means that each inverse
matrix coefficient preserves its sign over 47),

(i) A!is strongly regular, i.e. p(l4d ™| 4) < 1,

(iii) the whole solution set X is part of a single orthant R? = {x'e R"; z;x > 0, Vj},
where z is some =+ 1-vector.

Before giving the main result, we introduce several notations. Put x = A~ b,
e=(1,1,...,1)"eR" and let T, denote the diagonal matrix with diagonal vector
yeR". Fortwon x nmatrices P = (P;)and R = (R;)) wedenote P * R = (P;R;;), the
componentwise product of P and R, and diag P = (Py,, P,3,..., P,,)". Finally we
introduce the sign matrix § = (§;;) by

g _f 1 (A1 >0
T-1 0 (A7 <0
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(the case (A™"); = 0 cannot occur due to (i)).

THEOREM. Let (i), (ii), (iii) hold. Then we have

(n i=x+diag(A" ZM,-)
i=0
@) ;c:x—diag(A‘1 Z(—l)iMj)
j=0
where the matrices M; are given by
3) My = S*((4|x| + ")
@) M,=S+(BM,_)), j=12,...

with B = AT, A

ProoF. (a) Let Y = {ye R%|y;| = 1foreachj}. Asin the general theory [2], denote
by x, the solution of the system (4 — T,AT)x’ = b + T,§, ye Y (zisthesameasin
(iii), so that T,x, > 0 holds). From (ii) it follows that p(4 "' T,AT;) < p(|A '] 4) < 1,
hence x, = (A — T,AT) '(b + T,0) = (E — A '"T,AT) "(x + A7'T,6) = x +
Y (AT'TATYx + Y (A '"TATYA 'T,6 = x + Y (A~ 'T,ATJ(A™'T,(4|x|

j=1 Jj=0 i=0
+ 8)). Thus we have proved that

o0
) X, =x+ Y (AT TAT(A'T,(4|x| + 5))
=0
holds for each ye Y.

(b) Let y(i) denote the ith column of S. We shall prove by induction on j that for
eachj > O0and ie{l,...,n}, (A7 ' M))., the ith column of 4~ 'M), satisfies

6 (A~ le)-.' =(4"! T4 TYA™! Tyi(41x| + 6)).

Let i be fixed. If j=0, then from (3) we have (47 'M,)., = A"} (My),; =
A 'T(4lx| + 8). Let (6) hold for some j>0. Then by (4) we have
(A~ 1Mj+ Di=A" 1(Mj+1)'i = (1‘1—1'1;(;)11’1;)‘;+ 1(1‘1—17;:(.')(4' x| + 8)), which is (6).

(c) Inview of assumption (i), we have %; = (x,);, Xi = (x_ ), see [2], theorem 3.
Hence, combining (5) and (6), we obtain for each i € {1, ..., n} that X; = x;
+ Y (A M) =x; + diag(A—1 Y M,-)) andx; = x; + 3y, (— 1Y (A7 M),

j=0 =0 i j=0
=X, — (diag (A"‘ ¥ (—l)fMj)> , which proves (1) and (2). n

ji=0 i

Formulae (1) and (2) may be used in practical computations, but the rounding
errorsin 4~ ' may influence the result; therefore the method described in [3] is to be
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preferred. Nevertheless, the theorem implies some asymptotic consequences. De-
note

B = max {max 4;;, max 5{} .

4

Then we can easily prove by induction from (3), (4) that
A 'M; =0 ")

holds for each j = 0, therefore for each m > 0 we have

5 f=x+ diag(A‘1 i M,-) + 0(B"*2)
i=o0
(6) gczx—diag(A“ i (—l)iM])+o(ﬁ~'+1)
=0
and !
Y (% — x) = diag (A‘1 z M,.) + O(B™*?).

For m = 0, we obtain
% =x + A Y(dlx| + 6) + O(B?)
x=x—|A7"|(4x] + 8) + O(B?)

which is Miller’s result in [1]. If we take m = 1, we get

(8) % = x + |[A"Y|(A|x| + d) + diag N + O(8?)
©) x =x — |A7*|(4x| + 8) + diag N + O(8°)
where

N=A"'M, = AN S*(AT,A" XS *((4]x] + deM))).
Obviously, if f is small, then formulae (8), (9) can give acceptable estimates. More-
over, they imply
4 — X) = A7"(4Ix] + 8) + O(B°).

This is an interesting improvement of Miller’s result, where the error is of the form

O(B?).
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