AN ASYMPTOTIC RESULT FOR LINEAR INTERVAL SYSTEMS

J. ROHN

Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 11800 Prague 1, Czechoslovakia

Abstract.

It is shown that the bounds \underline{x} and \bar{x} of the exact interval solution (hull) of a system of linear interval equations can be expanded into infinite series and some asymptotic conclusions are drawn.

AMS Subject Classification: 65G10

Let $A^I x = b^I$ be a linear interval system with an $n \times n$ interval matrix $A^I = [A - A, A + A]$ and a right-hand side interval *n*-vector $b^I = [b - \delta, b + \delta]$. The exact interval solution is defined as the narrowest interval $[\underline{x}, \overline{x}]$ enclosing the solution set $X = \{x'; A'x' = b', A' \in A^I, b' \in b^I\}$, i.e. $\underline{x} = (\underline{x}_i)$, $\overline{x} = (\overline{x}_i)$ must satisfy

$$\underline{x_i} = \min\{x_i'; x' \in X\}$$

$$\overline{x_i} = \max\{x_i'; x' \in X\} \quad (i = 1, ..., n).$$

In this note, we shall show how the vectors \underline{x} and \overline{x} can be expanded into infinite series. The result will be given under three assumptions (for $B = (b_{ij})$) we denote $|B| = (|b_{ij}|)$):

- (i) A^I is inverse stable, i.e. $|(A')^{-1}| > 0$ for each $A' \in A^I$ (this means that each inverse matrix coefficient preserves its sign over A^I),
- (ii) A^{I} is strongly regular, i.e. $\rho(|A^{-1}|\Delta) < 1$,
- (iii) the whole solution set X is part of a single orthant $R_z^n = \{x' \in R^n; z_j x_j' \ge 0, \forall j\}$, where z is some ± 1 -vector.

Before giving the main result, we introduce several notations. Put $x = A^{-1}b$, $e = (1, 1, ..., 1)^T \in R^n$ and let T_y denote the diagonal matrix with diagonal vector $y \in R^n$. For two $n \times n$ matrices $P = (P_{ij})$ and $R = (R_{ij})$ we denote $P * R = (P_{ij}R_{ij})$, the componentwise product of P and R, and diag $P = (P_{11}, P_{22}, ..., P_{nn})^T$. Finally we introduce the sign matrix $S = (S_{ij})$ by

$$S_{ij} = \begin{cases} 1 & \text{if } (A^{-1})_{ji} > 0 \\ -1 & \text{if } (A^{-1})_{ji} < 0 \end{cases}$$

(the case $(A^{-1})_{ii} = 0$ cannot occur due to (i)).

THEOREM. Let (i), (ii), (iii) hold. Then we have

(1)
$$\bar{x} = x + \operatorname{diag}\left(A^{-1} \sum_{j=0}^{\infty} M_j\right)$$

(2)
$$\underline{x} = x - \operatorname{diag}\left(A^{-1} \sum_{j=0}^{\infty} (-1)^{j} M_{j}\right)$$

where the matrices M_j are given by

(3)
$$M_0 = S * ((\Delta |x| + \delta)e^T)$$

(4)
$$M_j = S * (BM_{j-1}), \quad j = 1, 2, ...$$

with $B = \Delta T_z A^{-1}$.

PROOF. (a) Let $Y = \{y \in R^n; |y_j| = 1 \text{ for each } j\}$. As in the general theory [2], denote by x_y the solution of the system $(A - T_y \Delta T_z)x' = b + T_y \delta$, $y \in Y(z)$ is the same as in (iii), so that $T_z x_y \ge 0$ holds). From (ii) it follows that $\rho(A^{-1}T_y \Delta T_z) \le \rho(|A^{-1}|\Delta) < 1$, hence $x_y = (A - T_y \Delta T_z)^{-1}(b + T_y \delta) = (E - A^{-1}T_y \Delta T_z)^{-1}(x + A^{-1}T_y \delta) = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}(A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}(A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}(A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}(A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}(A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}(A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}(A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}(A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}(A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}(A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}(A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}(A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}(A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A^{-1}T_y \Delta T_z)^{j}A^{-1}T_y \delta = x + \sum_{j=0}^{\infty} (A$

(5)
$$x_y = x + \sum_{i=0}^{\infty} (A^{-1} T_y \Delta T_z)^i (A^{-1} T_y (\Delta |x| + \delta))$$

holds for each $y \in Y$.

(b) Let y(i) denote the *i*th column of S. We shall prove by induction on j that for each $j \ge 0$ and $i \in \{1, ..., n\}$, $(A^{-1}M_i)_{i,j}$, the *i*th column of $A^{-1}M_i$, satisfies

(6)
$$(A^{-1}M_j)_{\cdot i} = (A^{-1}T_{y(i)}\Delta T_z)^j (A^{-1}T_{y(i)}(\Delta |x| + \delta)).$$

Let *i* be fixed. If j = 0, then from (3) we have $(A^{-1}M_0)_{\cdot i} = A^{-1}(M_0)_{\cdot i} = A^{-1}T_{y(i)}(\Delta|x| + \delta)$. Let (6) hold for some $j \ge 0$. Then by (4) we have $(A^{-1}M_{j+1})_{\cdot i} = A^{-1}(M_{j+1})_{\cdot i} = (A^{-1}T_{y(i)}\Delta T_z)^{j+1}(A^{-1}T_{y(i)}(\Delta|x| + \delta))$, which is (6).

(c) In view of assumption (i), we have $\bar{x}_i = (x_{y(i)})_i, \underline{x}_i = (x_{-y(i)})_i$, see [2], theorem 3. Hence, combining (5) and (6), we obtain for each $i \in \{1, ..., n\}$ that $\bar{x}_i = x_i + \sum_{j=0}^{\infty} (A^{-1}M_j)_{ii} = x_i + \left(\text{diag}\left(A^{-1}\sum_{j=0}^{\infty} M_j\right)\right)_i \text{ and } \underline{x}_i = x_i + \sum_{j=0}^{\infty} (-1)^{j+1} (A^{-1}M_j)_{ii} = x_i - \left(\text{diag}\left(A^{-1}\sum_{j=0}^{\infty} (-1)^{j} M_j\right)\right)_i$, which proves (1) and (2).

Formulae (1) and (2) may be used in practical computations, but the rounding errors in A^{-1} may influence the result; therefore the method described in [3] is to be

374 J. ROHN

preferred. Nevertheless, the theorem implies some asymptotic consequences. Denote

$$\beta = \max \left\{ \max_{ij} \Delta_{ij}, \max_{i} \delta_{i} \right\}.$$

Then we can easily prove by induction from (3), (4) that

$$A^{-1}M_i = O(\beta^{j+1})$$

holds for each $j \ge 0$, therefore for each $m \ge 0$ we have

(5)
$$\bar{x} = x + \operatorname{diag}\left(A^{-1} \sum_{j=0}^{m} M_{j}\right) + O(\beta^{m+2})$$

(6)
$$\underline{x} = x - \operatorname{diag}\left(A^{-1} \sum_{j=0}^{m} (-1)^{j} M_{j}\right) + O(\beta^{m+2})$$

and

(7)
$$\frac{1}{2}(\bar{x}-\underline{x}) = \operatorname{diag}\left(A^{-1}\sum_{\substack{j=0\\j \text{ even}}}^{m} M_{j}\right) + O(\beta^{m+2}).$$

For m = 0, we obtain

$$\bar{x} = x + |A^{-1}|(\Delta|x| + \delta) + O(\beta^2)$$

 $x = x - |A^{-1}|(\Delta|x| + \delta) + O(\beta^2)$

which is Miller's result in [1]. If we take m = 1, we get

(8)
$$\vec{x} = x + |A^{-1}|(\Delta |x| + \delta) + \operatorname{diag} N + O(\beta^3)$$

(9)
$$\underline{x} = x - |A^{-1}|(\Delta |x| + \delta) + \operatorname{diag} N + O(\beta^3)$$

where

$$N = A^{-1}M_1 = A^{-1}(S * (\Delta T_z A^{-1}(S * ((\Delta |x| + \delta)e^T)))).$$

Obviously, if β is small, then formulae (8), (9) can give acceptable estimates. Moreover, they imply

$$\frac{1}{2}(\vec{x} - \underline{x}) = |A^{-1}|(\Delta |x| + \delta) + O(\beta^3).$$

This is an interesting improvement of Miller's result, where the error is of the form $O(\beta^2)$.

REFERENCES

- [1] W. Miller, On an interval-arithmetic matrix method, BIT 12 (1972), 213–219.
- [2] J. Rohn, Solving interval linear systems, Freiburger Intervall-Berichte 84/7, 1-14.
- [3] J. Rohn, A two-sequence method for linear interval equations, Computing 41 (1989), 137-140.