ON SENSITIVITY OF THE OPTIMAL VALUE

)

il
(1) min {¢"x; Ax = b, x 2 0}

g an optimal solution X, test how sensitive is the optimal value k= ¢Tx subject to small
. ss in the data A, b, c. We shall construct a (“‘condition”) number measuring this
kind fidy, imwolviag oaly the initial data, the optimal solution X of (1) and the optimal

solution ¥ of the dusl problem
(2) max {b"y; A"y < ¢} .

To begin with, for a given real number a > 0 consider the family of perturbed problems

min {c¢'Tx; A'x = b', x 2 0}

tive errors of the data do not exceed «, i.e. for which

|4’ = 4| < o4

*) O seauitivist optimalni hodnoty ulohy linedrniho programovami. V stati je uvedeno
,,Gislo podminEnosti charakterizujici vliv malych relativnich chyb vstupnich dat dlohy linearniho
programovani na relativni chybu jeji optimalni hodnoty.
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(5)
(6)

6" - ] < olt]

e — e = ¢

IIA

hold (the absolute value |4| of a matrix A = (a;;) is defined by |4|= (|a;;}); similarly for
vectors). We shall assume that there exists an & > 0 such that for each « € [0, &), each problem (3) -
satisfying (4), (5), (6) has an optimal solution and its optimal value will be denoted by A(4’, &', ¢’).
Now, for a given , the maximal relative error of the optimal value under relative data exrors
of at most « is given by

74, b, c) = max{

h(A', b, ¢') — h(A, b, c)

P . A, ¥, ¢ satisfy (4), (5), (6)} .

This value depends on «, and is generally difficult to evaluate. Therefore we introduce the scmsi-
tivity coefficient I

e
C

(4, b, ¢) = lim 1u{ds b, c)
=0, a

Obviously, if « is small, then 74, b, ¢) is approximatcly egual 0 ¥4, b, ¢) z, hence (4, b, ¢)
becomes a measure of sensitivity of the optimal value swbject 80 relatime expors of the data.

We shall show that (4, b, ¢) can be cxpressed in terms of the

problems (1) and (2).

Theorem. Let the optimal solution x of (1) be nondegenerate, let the nonbasic:':’ relative cost~*
coefficients be positive and let ¢'x # 0. Then there holds

(7)

(A4, b, ¢) =

¥ of the

_ L8+ P+ o2

where ¥ is the optimal dual solution.

Proof. Under the assumptions stated, there exists sa £ > 0 such that for cach €€ [0, 2),
any problem (3) satisfying (4), (5), (6) has a unique optimal besic solotion with a common basis B.
Let A% denote the basic part of A’. Then for the optimal solution x” of (3) we have

can
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xh = Ay 10 = [Ay(E — A5 '(Az — 4p))] 7' b’ =
= [E - Ap'(ds — Ap)) " (Xs + A3 (V' — b)) = Xp + A3 (b - b) +
+ 454~ 43 %5 + 3 (45 (s — A5 Ty + 5 (45 (A — A3 43 ~ D)

(provided « is small enough so that the inverse could be expanded into infinite series). Since
|dp — Af| = «|dp| and |6’ — b = alb], the remaining terms are of order 0(x?), so that we

write

xp = Xg + Ay (b ~ b) + A5 '(Ay — Ap) X5 + O(x%) .
Hence for the optimal value of (3) we obtain
WA B, ) = ciFxp = (e + (ch = cal)T X8 =
= h(A, b, ¢) + 7' (b’ — b) + (cj — ca)" Xp + 7'(Ap — Ap) X5 + 0(«%).

The maximal value of yT(b" — b) over & satisfying (5) is equal to «|y|" |b|; similarly for the
amother two terms. Thus we have

4, b, ¢) =

leol™ % + 16" 151 + 91" [4n] %o , 4 o2,
[¢"%]




hence taking the limit and using the fact that
el %5 = |c|T %, |4g| %5 = |4]%,

we get (7).
As an interesting consequence we obtain that

(8) 7(4,b,¢) 23

for each problem satisfying the assumptions of our theorem. In fact, there holds [c"x| < |¢[" %
and from the duality theorem [i] we have |¢Tx| = |67y < |b]T [| and |c"x| = [yT4x|=
< |5|T || %, hence (8) follows from (7). Thus we can sce that the maximal relative error of the
optimal value is at least three times greater than the maximal relative error in the data. The
minimal value of )4, b, ¢) = 3is achievedeg.iff 4= 0,b= 0,c= Oandy= 0.

Theabove result can be also extended to a linear programming problem in the standard

o

1\

min {¢"x; Ax 2 b, x = 0}

s dual problem
(10) max {bTy; ATy ¢,y 2 0} .

Defining 7, and 7 in the same way as above, we can see that the value of y for (9) may be computed

min {¢"x; Ax — z = b,x =0,z 20},

which is of the form (1), if we replace |4|x by |(4, 0)] (f) (since the columns corresponding
z

to z are not subject to perturbations), which results in the same formula (7), independent of z
(the only difference is that |7| can be replaced simply by ¥, since ¥ = 0). Also, writing the dual
problem (10) in the primal form

min {—bTy; —ATy 2 —¢,y = 0}
and applying the formula (7) 10 it, we obtain the same result as for the primal problem (9).
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