

A Two-Sequence Method for Linear Interval Equations

J. Rohn, Prague

Received June 13, 1988

Abstract — Zusammenfassung

A Two-Sequence Method for Linear Interval Equations. It is shown that only two matrix sequences are to be constructed to solve a system of linear interval equations with an inverse stable, strongly regular interval matrix.

AMS Subject Classification: 65G10.

Key words: Linear systems, inexact data, iterative solution.

Eine Zweisequenzmethode für lineare Gleichungssysteme. Es wird gezeigt, daß nur zwei Matrizensequenzen zu konstruieren sind, um ein lineares Intervallgleichungssystem mit einer invers-stabilen, streng regulären Intervallmatrix zu lösen.

It is shown here that some of the author's previous results can be reformulated in such a way that only two matrix sequences are to be constructed to compute the exact bounds of solution of a system of linear interval equations with an inverse stable, strongly regular interval matrix (see definitions below). The result has two specific features: (i) a componentwise matrix product is used, and (ii) the resulting vectors appear as diagonal vectors of certain matrices.

To introduce the problem in question, assume we are given a linear interval system $A^I x = b^I$ with an $n \times n$ interval matrix $A^I = [A - \Delta, A + \Delta]$, assumed to be regular (det $A' \neq 0$ for each $A' \in A^I$), and a right-hand side interval vector $b^I = [b - \delta, b + \delta]$. Wanted is the exact interval solution $[x, \bar{x}]$ where x, \bar{x} are given by

$$\underline{x}_i = \min \{x'_i; x' \in M\}$$

 $\bar{x}_i = \max \{x'_i; x' \in M\}, \quad (i = 1, ..., n)$

M being the solution set of $A^I x = b^I$,

$$M = \{x'; A'x' = b', A' \in A^I, b' \in b^I\}.$$

An interval matrix A^I is called inverse stable if $|(A')^{-1}| > 0$ for each $A' \in A^I$, i.e. if each inverse matrix coefficient preserves its signature over A^I . For such an interval matrix, we define a signature matrix S by

$$S_{ij} = \begin{cases} 1 & \text{if } A_{ji}^{-1} > 0 \\ -1 & \text{if } A_{ji}^{-1} < 0 \end{cases} \quad (i, j = 1, ..., n)$$

(notice the transposition of indices). For two $n \times n$ matrices, $X = (X_{ij})$ and $Y = (Y_{ij})$, we define their componentwise product as $X * Y = (X_{ij} Y_{ij})$ and the absolute value as $|X| = (|X_{ij}|)$. Further, let diag X denote the diagonal vector of X. i.e. diag $X = (X_{11}, X_{22}, ..., X_{nn})^T$. Finally, let $e = (1, 1, ..., 1)^T \in \mathbb{R}^n$ and denote

$$B = b e^T$$

and

$$D = \delta e^T$$

 $(b, \delta \text{ arc column vectors})$. Our method for computing \underline{x} and \overline{x} is based on the following theoretical result.

Theorem 1: Let A^I be regular and inverse stable. Then the matrix equations

$$AX = B - S * (\Delta |X| + D)$$
 (1)

$$AX = B + S * (\Delta |X| + D)$$
(2)

100

have unique matrix solutions \underline{X} and \overline{X} , respectively, and

$$\underline{x} = \operatorname{diag} \underline{X}$$

$$\bar{x} = \operatorname{diag} \bar{X}$$
.

Proof: For each $i \in \{1, ..., n\}$, denote by y(i) the signature vector of the i-th row of A^{-1} , and let $T_{y(i)}$ be the diagonal matrix with diagonal vector y(i) (i.e. $y(i) = \text{diag } T_{y(i)}$). In [5], Theorem 1.2, it was proved that under the regularity assumption, the equations

$$Ax = b - T_{v(i)}(\Delta | x | + \delta)$$

$$Ax = b + T_{v(i)}(\Delta |x| + \delta)$$

have unique (vector) solutions, denoted there by $x_{-y(i)}$ and $x_{y(i)}$, respectively; moreover, $\underline{x}_i = (x_{-y(i)})_i$, $\bar{x}_i = (x_{y(i)})_i$ hold if A^I is inverse stable ([3], Theorem 3; proved in [4], p. 23). Hence if we define matrices \underline{X} , \overline{X} by $\underline{X} = (x_{-y(1)}, ..., x_{-y(n)})$ and $\overline{X} = (x_{y(1)}, ..., x_{y(n)})$, then \underline{X} , \overline{X} solve uniquely (1), (2) and there holds $\underline{x} = \operatorname{diag} \underline{X}$, $\overline{x} = \operatorname{diag} \overline{X}$.

To solve (1) and (2), let us premultiply them first by an approximate inverse R of the matrix A to bring them to an equivalent fixed-point form

$$X = (E - RA)X - R(S * (\Delta | X | + D)) + RB$$

$$X = (E - RA)X + R(S * (\Delta | X | + D)) + RB$$

(E is the unit matrix). These nonlinear equations may be then solved iteratively by

$$X^{k+1} = (E - RA)X^k - R(S * (A | X^k | + D)) + RB$$
(3)

$$\bar{X}^{k+1} = (E - RA)\bar{X}^k + R(S*(A|\bar{X}^k|+D)) + RB$$
 (4)

(k=0,1,...) with the recommended starting point

$$X^0 = \bar{X}^0 = RB. \tag{5}$$

To assure convergence, we shall assume the nonnegative matrix

$$G = |E - RA| + |R| \Delta$$

to satisfy

$$\rho(G) < 1; \tag{6}$$

this is true if A^I is strongly regular (i.e. $\rho(|A^{-1}|\Delta) < 1$; cf. Neumaier [1]) and R is a sufficiently close approximation of A^{-1} . We shall later show that (6) guarantees regularity. To be able to check A^I for inverse stability, we introduce also the matrix

$$F = (E - G)^{-1}$$

and the condition

$$GF|R| < |R|. \tag{7}$$

Then the following theorem holds

Theorem 2: Let (6) and (7) hold. Then A^I is regular and inverse stable and for the sequences $\{\underline{X}^k\}$, $\{\bar{X}^k\}$ generated by (3), (4), (5) we have $\underline{X}^k \to \underline{X}$, $\bar{X}^k \to \bar{X}$, with

$$\begin{split} &|\ \underline{X} - \underline{X}^k| \leq GF \ |\ \underline{X}^k - \underline{X}^{k-1}| \leq G^k F \ |\ \underline{X}^1 - \underline{X}^0| \\ &|\ \overline{X} - \overline{X}^k| \leq GF \ |\ \overline{X}^k - \overline{X}^{k-1}| \leq G^k F \ |\ \overline{X}^1 - \overline{X}^0| \end{split}$$

for each $k \ge 1$.

Proof: First, for each $A' \in A^I$ we have

$$A' = R^{-1} (E - (E - RA + R(A - A')))$$

and since

$$\rho(E-RA+R(A-A')) \le \rho(G) < 1,$$

we see that A' is regular and

$$|(A')^{-1} - R| \le \left(\sum_{1}^{\infty} G^{j}\right) |R| = GF|R| < |R|,$$

which means that A^{I} is inverse stable.

Next, arguing as in [2], we first obtain from (4) that

$$|\bar{X}^{k+1} - \bar{X}^k| \le G |\bar{X}^k - \bar{X}^{k-1}|$$

for each $k \ge 1$ and then by induction

$$|\bar{X}^{k+m} - \bar{X}^k| \le (G^m + \dots + G)|\bar{X}^k - \bar{X}^{k-1}| \le GF|\bar{X}^k - \bar{X}^{k-1}| \le G^kF|\bar{X}^1 - \bar{X}^0|$$

for each $m \ge 1$, so that $\{\bar{X}^k\}$ is a Cauchy sequence, hence $\bar{X}^k \to \bar{X}$ due to the uniqueness of the solution of (2). Taking $m \to \infty$ in the above inequality, we obtain the estimation for $\{\bar{X} - \bar{X}^k\}$. The proof for $\{\bar{X}_k\}$ is quite analogous.

Note that the conditions (6) and (7) under which the method works are satisfied if all the coefficients of A^{-1} are nonzero and Δ is sufficiently small, which is a frequent case. Also, under these conditions the sequences $\{\underline{X}^k\}$, $\{\bar{X}^k\}$ converge from arbitrary starting points, but the choice (5) seems to be the best since then each column of \underline{X}^0 , \bar{X}^0 is equal to Rb, an approximate solution to Ax = b.

References

- [1] Neumaier, A.: Linear Interval Equations. In: Interval Mathematics 1985 (K. Nickel, ed.), pp. 109 – 120. Lecture Notes in Computer Science 212. Springer 1986.
- [2] Rohn, J.: An Algorithm for Solving Interval Linear Systems and Inverting Interval Matrices, Freiburger Intervall-Berichte 82/5, 23-36.
 [3] Rohn, J.: Solving Interval Linear Systems. Freiburger Intervall-Berichte 84/7, 1-14.
 [4] Rohn, J.: Proofs to "Solving Interval Linear Systems". Freiburger Intervall-Berichte 84/7, 17-30.

- [5] Rohn, J.: Some Results on Interval Linear Systems. Freiburger Intervall-Berichte 85/4, 93-116.

J. Rohn Faculty of Mathematics and Physics Charles University Malostranské nám. 25 CS-11800 Prague 1 Czechoslovakia

Printed in Austria Druck: Paul Gerin, A-1021 Wien