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Abstract. We introduce the radius of nonsingularity a(a,A) of a square

matrix A subject to a nonnegative square matrix A as tre minimum
£2 0 for which there exists a singular matrix A’ satisfying A - £4 <
A"$A +&A . We show that even in the special case of A being the
matrix of all units, computing d(A,A) is NP-hard for matrices A with
rational entries; this is proved via establishing a connection of our
préblem to the problem of computing the maximum cut in an associated
graph., As a consequence we prove that the problem of testing singula-

rity of interval matrices is NP-complete.

1. Introduction

In many areas it is important to know whether a given square matrix
A is sufficiently far from a singular matrix. Such areas include sen-
sitivity aralysis, control theory, numerical methods and interval
analysis. Several different approaches to this question have been de-
veloped, see e.g. [4, 16].

Here we introduce the following measure. Let A,4 be two nXxn
matrices, A nonnegative, We define the radius of nonsingularity
d(A,A) as the minimum &2 0 for which there exists a singular matrix
A’ satisfying A -&£A £ A'€A +&A . The concept of d(A,A) is moti-
vated e.g. by the following situations:

(a) Rounding. Assume we are given a matrix Ao some of whose

entries are irrational numbers; such a situation may occur when the




data are formally derived from some other real world values. Let the
entries of Ao be rounded off to p decimal places, giving the repre-
sentation matrix A. Define Ayy =0 if (a) 15 = Ayyand d45=1
otherwise, If d(A,A)) %IO"P, . then we can be sure that Ao is non-
singﬁlar; otherwise. the precision chosen 1s insufficient to make a
decision (notice that A, is not used in the test; cf. [15]).

(v) Relative_ errors. If A= Al (i.e., the matrix consisting of

the absolute values of the entries of A), then d(A,A) yields the
minimum relative error of the coefficients which brings A to a sin-
gular matrix,

(c) Singular_interval matrices. An interval matrix Al - {A'; A-A

£A°44A +A} is called singular if it contains a singular matrix.

Hence, Al is singular if and only if d(A,4A) <€ 1.

We present the following results. The key result (Treoren 2.1)
gives an explicit formula for d(A,A) . In order to show that computing
da(A,A) is NP-hard, we consider tte special case of A = E {(the matrix
of all units) and we show in Theorem 2.2 that

aa,B) = /r(a™Y
where r(B‘) is defined by

r(B) = max {ztBy; z,ye{-—l,l}n}
(’’t?’ denotes transposition). Since r is a matrix norm, we first
give some upper and lower bounds on it. 'Then, by establishing a con-
nection of r to the max-cut in an associated graph,we show that com-
puting r(B) is NP-hard for matrices B with rational entries. As a con-
sequence of the above results we obtain that the problem of testing

singularity of interval matrices is NP-complete.

Some notations. We work with square matrices of size nX n with

real entries. We denote by Q the n-dimensional discrete cube

Q= {-1," = {yeRn; lyl = e}, where e = (1,1,...,1)%. For each
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vyE€Q, we denote by Ty the diagonal matrix with diagomal vector y
(i.e. (Ty)ii = y4 and (Ty)ij =0 for i # j). For an arbitrary nxn
matrix A we denote

500(A) = max {l)\l; Ax = ) x for some x£0, ) real},
i.e. an analogue of the spectral radius, with maximum being taken
only over real eigenvalues; we set O(A) = 0 if no real eigenvalue
exists . We use the following matrix norms: S“‘(A) = \/S’o(AtA)

(the spectral norm) and s(a) = 1zrjlaijl'
’
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For an nxn matrix A and a nonnegative nXn matrix 4 , we introduce
the radius of nonsingularity by

d(A,A)- = min {&2.0; A-sgA £ A"€A +2A for some singular A'}
Obviously, d(A,A) = 0 if A is singular, On the other hand, it can

ve a(a,A)

©® : consider the matrices

G o). ().

Here each A" with A - &4 £ A'€4 + &4 satisfies det A" = -1, hence

il

A

d(a,4) is infinite,

Since the case of A singular is obvious, we shall consider A to be
nonsingular in the sequel. In this case, under notations introduced
in the previous section, we shall derive an explicit formula for

aa,d) (we employ the convention 7 =°°) :

Let A be nonsingular and A2 0. Then we have

B PR 3K

d(a,4) = 1/max {fo(A_lTyATz); y,zéQ} (2.1)
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£20, existence of a singular matrix A’ satisfying A - £l < A7
£ A +&4 is equivalent to singularity of the irtervael matrix
(A -24 , A +&4) , which, according to the assertion (C3) of
Theorem 5,1 in [14], is the case if and only if
?O(A'lmyad T,)21
holds for some y,z&Q, i.e, iff
emax { P (A'lmya T.); y,2€Q}31,
hence the minimum value of £ is given by (2.1).
If d(A,A) = e , then by the same result in [14] we have
Efv (A"lTyA ‘.’L‘z)(l for each y,zé&€ Q and each &3 0, hence
530 (A-lTyA Tz) = O for each v,z€Q and (2.1) again holds.

We are going to show that computing d(A,A) is NP-hard, For this
purpose, from this point on we shall only consider tre case A =EH =
eet, and we shall simply write d(A) instead of d(A,H). Ve have
this result:

Theorem_ 2.2, Let A be nonsingular. Then

d(a) = 1/r(a™d) 2.2)
where

(A7) = max {ztA-ly; z,y€Q}.

Proof, For A= ee®, we have A"lTyATZ = A Yyz% for each y,z€Q.

T --4—¥.4

We shall show that
ﬁ(A yzt) = |2ta Yy
in this case. This will be done if we show that A +yz® has only two

1

real eigenvalues A, = O and >‘1 = z¥A7ty. Since yzt is singular,

Q
A, = 0 is an eigenvalue. Next, for x = A”ly we have

- -t = o ‘
(A 1YZ )X = (A lb’)( ZtA ly) = )lx, lfxence >.1 is also an eigenvalue,

Conversely, if A is any real eigenvalue, tken from A-lyztx = )\x we
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have eitker z'x = O, then N\ = >\°,, or z'x £ 0, in which case pre-
miltiplying by z° yields )\ = z'A 1y = )l‘ Hence no other real eigen-
value exists, so that 0(A—1yzt) = |2%A"Yy|. Then Theorem 2.1 gives
a( = 1/r(a™Y , where

r(a™h) = max{lztA-ly]; 2,7€ Q} = max {ztA.‘ly; Z,y € Q_}.

The formula (2.2) could be also inferred from Kahan’s result in
(7]1. The mapping
A ~>»r(A) = max { ztAy; z,y€ Q}
is obviously a matrix norm. Let us mention that r(A) has been studied

by Brown and Spencer [3] (see also [5]) in case that A is a *l-matrix.

They proved 3 3
2. 2" : 5
\/;n - &, mln{r (a); 255 = $1}<(1 + 0@) n (2.3)
(i.e., the minimum over all #l-matrices A). We show in Theorem 2.4

that the lower bound remains valid fcr any Ifle.:trix A with s(A) = nz.

Since r(A) is a matrix norm, we have clN(A) <r(aA) iczN(A) for any
other matrix norm I\T(A), whexre Ccq and ¢, are some constants depending
on n only. We present explicit values of such constants for the
norms Y(A) and s(A). Further, we show that computing the exact value
of I(A) can be reduced to the max-cut problem in a weighted grzvh,
and conversely, max-cut can be reduced to computing r(A) . The former
reduction provides us with a possibility of computing some bounds on
r(A) from approximative solution of max-cut, and the latter implies
that computing r(A) is WP-hard,

The next theorem gives a relation between the norms r andf 5

f(A) £r(a)4n g(A)
r(A) ; n ) min ’

The proof is straightforward and will be omitted.
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In the next theorem we compare r(A) with the norm s(A) .

Theorem 2.4. We have
1

J;én—ﬁs (A) € r(a) £s(a).

(121) that E[\etyl].} Ven/m for random vé& Q. Clearly, E[ lztyl; Y€ Q]
= E[letyl; yeQ] for any fixed z€Q. Let a = (al""’an)t be a non-

(i

t
negative vector, Define vectors a s (ai’ai+1""’an’al’""ai-l) ’

i=l,...yn, i.e. each a(i) is obtained from a by a cyclic rotation.

Set o= > a;. We have
1

1 . n .
Efly%al ; yeq] = ililng E{ly*a™| ; yeq] = %E[El y*aPl; yeq]

n g .
t t 2 ~-1/2
Bl Est Pl = St 2 E 2
Hence, for arbitrary aé€ R? (not necessarily nonnegative) we have
E[lytal ; TE Q])}cn_l/2o¢
and, with A; denoting the i-tk row of A,
n n n n
= -1/2 -1/2
B Ayl = El |asyl] 2> Z’lcn a;:|=cn s(a)
[ 1awl] = ZEllagl] 2 2 ol :
hence there exists a y€ Q such that

n
ztAy = 12—:1 a9l 2 cn-l/‘?s(A)

where z is the sign vector of Ay.

e

where ¢ =

The proof for the upper bound is trivial,

Let us note that the original purely probabilistic prcof of the
lower bound of (2.3) from [3] can be modified to an algorithmic one.
Thus, for a given & l-matrix A, one can construct in polynomial time

3/2

a pair y,z€ Q of vectors such that ztAya cn where ¢ is the above
constant, An extension of this algorithm for arbitrary matrix A, as

well as other approaches to approximative computing r(A) , will appear

in (131.
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In the rest of this section we will study a relation between
r(4) and the max-cut problem. Again, such a relation is not quite
new since the max-cut problem has already been used for reformulation

t

of quadratic optimization problems of type x*Ax + ¢ x, see e.g. [1, 2].

o e e e e e e e e e e e B G G e

is defined as

MC(G) = max c¢(dS)
SN

where S is the set of edges with one endvertex is S and one in N - S,

and c(F) = 2_ c(f) for a subset FCE.
fer

In order to reduce computing r(4) to max-cut problem, we define
the bipartite graph BA of & matrix A as the weighted bipartite graph
B, = (Yv Z) where Y and Z are two copies of {3,...,n} end

E ={ij; aiy £ O}. The weight of an edge ij is 8y5e

" - -

Proof. Given y,z€Q, define a set S by S = {ié T ¥4 = 1}0{36 Z;
zy = —1} . We have (l...l denotes cardinality) '
t
y Az = __Z_aj“,jyiz;j = Z aij = 'E aij = ZZ aij ".Zaij =
1,3 yi=zj ¥y Zj Ti=23 i,J
2 Ié\sl = etAe, and taking maximum on both sides gives the result.
Max~cut is a known NP-hard problem (see [6]) . A practical algorithn

for solving it has been developed in [2] . Since it is difficult to

find an exact solution, one may use a heuristic. We survey some of ther

Lower bounds_or_max-cut.

(i) Poljak and Turzik [11]: If G = (N,E) is a connected graph, then
MC(G) > % + minimum weight of a spanning tree of G.

A cut {5 satisfying the above inequality can be found in O(n3) time,
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(ii) Lieberherr and Specker have implicitly shown in [S] the

bound

ue(G) 2 ¢ By .
It is easy to obtain the above bound by a probabilistic method ([53) .
The merit of [9] is a polynomial-time algorithm for it.,

KO(6) £ F Moy
is the maximum eigenvalue of the matrix P given by
—eyy If 1j€E, 1 £
Pyy = 0 if 1jc{eE, it j
Zcik if 1 = j.
k

We have shown that computing r(4) can be reduced to max-cut.

where >t max

Now we present an opposite reduction to establish that computing
r(A) is NP-hard. We reczll that even the caxdinality version of

e R Sl et o o S e o

max-cut is NP-hard([6]).

P A P4

-1l if ij€E, i £}

a 0 if 13¢E, 143

ij =
M if i = j,
where M is sufficierntly large integer (u>2]E| is sufficient) . Let
r(A) = ztAy for some z,y&€ Q. It is easy to see that z = y because of
the choice of ¥, For each y€Q, with S = {i; ¥y = 1} we have
1 Y - 1S . -.)2
YtAY = Zaijyiyj = z (‘§aij)[(yi-yj) - 2] = ZZ.aij<yi yj)
1,j 7770 1,0 IO T R
+ Z'aij =Mn +4[ds| - 2|E|,hence ¥(8) = Mn + auc(c) - 2|E|
i,] ' )

which shows that computing r(A) is NP-hard since computing the

max=-cut can be reduced to it.
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In view of Theorem 2.2, this result shows that computing d(A)

is NP-hard for matrices with rational entries.

Finally we formulate a consequence for interval matrices. A square

I

interval matrix A~ = {A'; A%A'S A} is called singular if it con-

tains a singular matrix. Consider the decision problem
rational matrices.

uestion: Is AI singular?
. g

matrix A'E.AI in case that the given interval matrix is singular and
we can check the required property of A° in polynomial time. The pro-

blem is NP-hard since computing r(A) can be reduced to it,

A more detailed discussion of the problem of testing singularity

of interval matrices can be found in [14] .
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