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Abstract. A measure of nearness of real matrices to singu-
larity is introduced and described. The proof employs a
characterization of singular interval matrices of a special

typee.
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Let A be an nXn real matrix. The number

a(a) = min {lB-all ; B singular} , (1)
where .
l = ?
A1 = max fa ] (2)

can be considered a measure of nearness of A to singularity.
The value of d{(A) was investigated by Kahan [1] for

matrix norms induced by some vector norms. His result, however,
cannot be applied to the norm (2) which seems to be natural

in the context, since then d{A) expresses the minimum de-
viation of coefficients which transforms A to a singular
matrix.

If A is singular, then d(A) = O ; therefore We may
restrict our attention only to nonsingular matrices. We shall
give formulae for d{(A) and for the nearest singular matrix,
based on a characterization of singular interval matrices

“of & special type.For n 2 1 , let Y = {yé RT ly;l =1
for j =1 ,...,n} .

Theorem. Let A be a nonsingular nXn wmatrix. Then
there holds

where




T, =1
r(a) = max {247y ; 2,7€ Y} . (3)
If Z, ¥ are vectors from Y  for which the maximum is
achieved in (3), then
1 T

AO:A—r—(AT-;; (’4)

is a singular matrix nearest to A and the vector

Xy = Af‘; (5)

satisfies ‘;Jio a0 .

Proof. Denote e = (1,1,...,1)T6 R . Let B be a
singular nxXn matrix. Put [@ = |B~A{l .+ Then B belongs
to the interval matrix [A - (gaeT , A+ peeTJ , hence
(A - Fx eer , A+ ﬁ eeTJ is singular and using the lemma
in [2] , we get that there exist z,y & Y, such that

/Q zTa™y 21
holds. Hence also r(A) 2 1 , and since B was an arbitrary
singular matrix, we get d(a) 2 ;1(-1-)- . On the other hand, for
Ag1x, elven by (%), (5), a direct computation gives
A.Oxo = 0 , hence AO is singular and HAO-A " = ;r}g- H
therefore d(a) = ?(i')' . m

Unfortunately, the value of r(A) is not easy to compute.
However, there exists a class of matrices for which r(.A.)

can be expressed explicitly :

Corollary. Let A Dbe a nonsingular nXn matrix for
which there exist 2, & Y, such that

~  miew

ziAiij}. 0 (i,jel,e..,n) (6)

holds. Then d(A) = ;(%)- , Where

- ST[att .
I‘(A) = glei‘j[



-3 -

Proof. Under the assumption, we have 'ETAA?,S r(A) £

=1 =1 ~  =le AT i~ -1
£ %IAI.J = ] ziAijyj =z A"y , hence r(A) = élAij] . B

Especially, for inverse nonnegative matrices (where A'1.}, o,
so that (6) is satisfied with % = ¥y = e) wWe get that
r{a) = g:“) AI; and the nearest singular matrix can be obtained
g 1 .
by substracting the value of m-)- from all coefficients of A .

Let us now return to the general case. If the maximum in (3

is achieved at some z,y & Y_ , then, sinoe r(i) = sz;'t;g T

n
=2z (A'Ty). = Z(ZTA-1) v. , there must hold
i i 3 33

i
z (A"1 Y. 2 0 f i=1 (7)
i Y i~ Or 1=l ,see,y2
and
GNP 8
zZ A )Jyj,.o for J=tl,ee.,m , ‘ (8)
for otherwise the value of zT '1y could be inoreased. Thus,
using the vector norm [xl , = Z lxil , Wwe may also write
i

r{A) = max { "A"y" 43 YE Yn} G -

If n 4is large, then r(A) cannot be computed in this way
since Y has 2% elements, In this case, we propose the
following algorithm which stops after reaching a pseudooptimal
solution satisfying the necessary optimality conditions (7)
and (8) :

Algorithm.

0, Select z,y& Yn .

1. Set =z, := =z, for each i with z. (1), <o .
L lT -1 N

2, Set v = Yy for each j with (z A )jyj L0 .

3. If (7) holds, terminate, Otherwise go to step 1 .

The algorithm is finite since Yn is finite and the wvalue of

z'A"'y is always inoreased during step 1 or 2, so that cycling

cannot occur. The condition (8) is always satisfied after




step 2, hence it need not be tested in step 3. If the algorithm
terminates with some z,y & Yn in step 3, then

a(a) £ —50
zZ A Y
and the matrix
sz
*
A. = A ~
(4] z’l‘ -‘ly
. . . * 1
is a singular matrix with 4y - All = T and
Ay
*_* * -1 e
AOxO_O for xo.—A Y .

It is perhaps worth mentioning that according to (4), each
square nonsingular matrix A can be decomposed as A = AO' + A1 .
where A is singular and A1 is of rank one. Also,

I a~til 2 21( ) for each nonsingular nXn matrix A4 .
n dlA
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