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SOLVING SYSTEMS OF LINEAR INTERVAL EQUATIONS
by
J. Rohn, Prague

Abstract. This paper is a short survey of methods for computing bounds on solutions of
a system of linear equations with square matrix whose coefficients as well as the
right-hand side components are given by real intervals.

Q. Introduction

In this paper we give a short survey of results on computing the exact bounds for
components of solutions of a system of n linear equations in n variables whose
coefficients and right-hand sides are prescribed by real intervals (obtained as a result of
rounding off, truncating or data errors). We are primarily interested in methods for
computing the exact bounds on solutions. There are many good methods for computing
sufficiently close outer estimations, which we do not survey here; an interested reader is
referred to monograhs by Alefeld and Herzberger [1] and Deif [7] and to the survey
paper by Neumaier [12]. We omit here the proofs which can be found in [21] and [22],
or in preprints [17], [18], [19].

In section 1 we sum up the basic theoretical results and show that the minimum
(maximum) component values can be computed when taking into account only a finite
number of vectors. Methods for computing these vectors are surveyed in section 2,
while a special case in which the bounds can be expressed explicitly is handled in section
3. An application of these results to the problem of evaluating the exact bounds for
coefficients of the inverse interval matrix is given in section 4.

Basic notation: coefficients of a matrix A are denoted by Aij- IfA= (Aij), then the
absolute value of A is defined by |A| = (|Aij ). The inequalities A 2 0 (A> 0) are to be
understood componentwise, AT denotes the transpose matrix. The same notations also
apply to vectors.

Let A= {A; A - A< A < A_+A}beannxninterval matrix and b = {b; b, - 8< b

< b, + 8} an interval n-vector (A €0, 8 £0). For the system of linear interval equations
Alx = bl, the solution set X is defined by

X={x;Ax=b,Ae Al be bl}.
Throughout the paper, we shall be interested in methods for computing the vectors X =
(%), X = (X;) defined by

xj = min{x;; x € X}

: i=1,..,n), (1.1

X; = max{x;; x € X}
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giving the exact bounds for the components of solution vectors. If Al i regular (which
means that each A e Alis regular), then X is compact (Beeck [3]), so that x;, x; i =1,

..., n) are well defined. Testing regularity of Alis generally a difficult problem (see
[21], section 5). Fortunately, the sufficient regularity condition (Beeck [5])

pD) <1, 1.2)
where p denotes the spectral radius and D = |Ac‘1IA , usually works in practical
examples. Interval matrices satisfying (1.2) are called strongly regular (Neumaier [12]).

‘We shall first set out to describe the solution set X. The following basic result is due to
Oettli and Prager [16]:
Theorem 1.1, We have
X={x; |Ax-b, | <Alx|+8}.

The solution set is generally nonconvex; for example, see [2], [8], [14]. However, the
intersection of X with each orthant is a convex polyhedron. To see this, define for each

x € X its signature, vector sgn x € R? by (sgn x);=1if x; 2 0 and (sgn x); = -1
otherwise, and let T, denote the diagonal matrix with diagonal vector z. Then for z =

sgn x, we have [x| = T,x, hence the intersection of X with the orthant R," = {x € R,
T,x 2 0} is according to theorem 1.1 given by

(Ac-AT)x <b, +8
(A +AT)x 2 b, -8
T,x2 0.
Oettli [15] therefore proposed using a linear programming procedure in each orthant to

compute X;, X;, a method later investigated also by Cope and Rust [6]. The necessity of

solving a number of linear programming problems (n22*+1 in the worst case) makes this
approach generally disadvantageous.

Another method, proposed in [17], [18], [21], is based on this theorem
(notation : Y = {y € R™; |y;| = 1 for each j}) :

Theorem 1.2. Let Albe regular. Then for eachy € Y, the nonlinear equation
Acx-b, = Ty(Alxl +9) (1.3)

has a unique solution Xy € X and there holds
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Conv X = Conv {xy; ye Y}
The proof of this theorem reveals an unsuspected conneciton of our problem with the
linear complementarity theory; an interested reader is referred to [211]. Since ITy| =E
= aunit matrix for each y € Y, the xy's are just all solutions of the nonlinear equation

[Agx - bel = Alx| + 8. Methods for computing the xy's will be described in seciton 2.

Since Conv X is a convex polyhedron, each minimum (maximum) in (1.1) must be
achieved at some vertex of Conv X, i.e., in view of theorem 1.2, at some x,,. In this

y"
way we obtain formulae
% = min {(xy); ; ¥ € Y}
» (1 = l’ b n)
X; = max {(xy)i ;ye Y}

involving only a finite number of vectors. In the most unfavorable case, computation of
all 2™ vectors Xy may be inescapable. However, there exists a class of regular interval

matrices for which the number of xy's to be computed can be reduced down to at most

2n. A regular interval matrix Al'is called inverse stable if foreachi, je {1, .., n},
either Aij'l 20 foreach A e AI, or Aij'1 <0 for each A e Al holds. For such an AI,

we may define vectors y(i)e Y (i=1,...,n) by

Lif A;7120 foreach Ae Al

ST
-1 otherwise G=1, ..., n)

Then we have

Theorem 1.3 )[21]). Let Al be inverse stable. Then there holds

iy G=1,..m)
i=1,..,n).
Xj = (y@i

Hence at most 2n vectors Xy are to be computed. The inequality

Clal <A, (1.4)
where C = D(E-D)'l (withD = IAC'IIA as before) is a sufficient inverse stability

condition ([21]), recommended for use when solving practical examples, where A is
usually of small norm and inverse stability often occurs.
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In the special case of interval matrices satisfying

TZA'ITyz 0 foreach A e Al (1.5)

(e, At 20if ziy; = 1 and A 1< 0if zjy; = -1) for some fixed z,y € Y, we have
y(@) =y if z;= 1 and y(i) = -y if z; = -1, hence

xj = min{(xy);, (x_y)i}
X = max{(xy);, (x_y)j}

1f Alis inverse nonnegative (by definition, Al>0foreachAe AI; holds iff (A, - A)'1

20and
(A, + A)_1 20, see [10], [20]), then (1.5) is satisfied withz=y =¢, wheree = (1, 1,
s I)T, and we have X = X_, X = X, a result obtained by Beeck [S]. If, moreover, (A,

+ A)'l (b.. - 8) 2 0 holds, then the bounds may be expressed explicitly by
c

x=(Ac+A) (b -8)

X=(Ac- 871 (b + )
(see [20]; for special cases, Barth and Nuding [2], Beeck [4]).
2. Computing the xy’s

As stated in theorem 1.2, foreachy € Y, Xy is the unique solution of the equation

Acx -bg = Ty(Alx|+ ). @.1)

We shall first describe a general method for computing Xy Set z =sgn x and denote

Ayy = Ac-TyAT,

by =b, + Ty8 s
then (2.1) can be equivalently written as
Ayzx = by

T,x20.

2.2)
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The following algorithm for solving (2.2) is a modification of Murty's algorithm [11] for
solving the associated linear complementarity problem:

Algori 21

0. Selectaz e Y (recommended : z = sgn(Ac'lby)). .
1. Solve Ayzx = by.
2. If T,x 20, set x,, := x and terminate.

3. Otherwise find
k = min{j; zZixj < 0}.
4. Set zy :=-z, and go tostep 1.

Theorem 2.1 ([211), Let Albe regular. Then the algorithm is finite foreachy €Y
and for an arbitrary starting z € Y in step 0.

If all the coefficients of A.™! are nonzero, if A and § are sufficiently small in norm and if

the algorithm is started in step O as recommended, then termination occurs when passing
for the first time through step 2, Otherwise, especially if started improperly in step 0,
the algorithm may solve up to 22 linear systems to find Xy (for an example, see [21]).

Therefore the algorithm, although general, may be found inappropriate in practical
computations.

An iterative method for computing Xy may be constructed when observing that (2.1) can
be rearranged to an equivalent fixed-point equation

X = Dy|x| + dy 2.3)

'wherfe Dy = Ac‘lTyA s dy = Ac'lby. To solve (2.3), we may employ either Jacobi
iterations

xy0=dy
xyk"'1 = Dylxykl +dy (k= 0,1,..)
or Gauss-Seidel iterations
Xy =dy
Tl R K+ gy k=0,1,..),

where Dy = Ly + Qy is a triangular decomposition of Dy, with I.,y having zero diagonal

entries. If Alis strongly regular, then xyk = Xy 'i'yk - Xy [21]. Since

Ixy - xykl < Clxyk - xyk'll < CDkldyl
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for each k 2 1 (similarly for xyk), iterative methods are suitable for problems with small
values of p(D).

As pointed out to the author by Neumaier [13], one may avoid computing the exact
inverse Ac-l (required in (2.3)) when using an approximate inverse B and employing

Krawczyk [9] iterations
Xo_
y =%
4 k+l - g ~ k 4k =
Xyt = (E-BAX," + BTyA]xy [+ Bby k=0,1,..)
which converge to Xy provided

p(BIA + [E-BA ) < 1

holds, a condition which is satisfied if Alis strongly regular and B is a sufficiently close
approximation of AC'I. Obviously, also a Gauss-Seidel version of Krawczyk iterations

may be given.
Consider now an important special class of regular interval matrices satisfying

A=gpT (2.4)

for some nonnegative (column) vectors q, p (i.., if g# 0 and p # 0, then A is of rank
one). Assume, moreover, that q and p are so small that the whole solution set X lies in a
single orthant; as proved in [22], this is the case if the inequality

pI(xc + B3+ (1 -pT D8+ T DIXI <kl (25)

holds, where we have denoted

X = Acnlbc
q=1ac"lq
3=1a.118.

Now, using z = sgn x,,, we have ]xyl = szy for each y € Y and from (2.3) we obtain

Xy =X + AC'IT),S + (xAc'l'qu

y
where a = pTszy . Premultiplying the above equation by pTTZ, computing o and
substituting back, we get

T -1
P+ pTTzAc Ty8
-1
1- PTTzAcqu

-1
A @ @9

-1
x = x + ATSd+
y c cy
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In the special case of 8 = yq for some real y > 0, (2.6) simplifies to

T
P Ixeg |l + 7 1
X = X 41 (A, Ty q) 2.7
q

Some applications of (2.6), (2.7) are given in [22].

xplicit formulae for x, X

For inverse stable interval matrices with radius A of the form qu , we may use formulae
(2.6) for Xy derived at the end of the preceding section in conjunction with theorem 1.3

to obtain explicit formulae for x;, x;.
Denote T = pT|A."!|. Then the sufficient inverse stability condition (1.4) has the
form

B+ el A <A, 3.1)
Further, foreachie { 1, ..., n} denote

A =pIT,A T ()9

K =pTT,ACIT )P

where, as before, z = sgn x, and y(i) is the signature vector of the i-th row of Ac'1 .
Then there holds

Theorem 3.1 ([22]). Let Al bl satisfy (2.4), (2.5), (3.1). Thenforeachie {1,

..., N} we have

@ | - g

Li =(xc)l-6i-
l+ki

ol
1

S T
= (% )i + 5i + TLI__.__

As a special case, consider linear interval systems Alx = bl satisfying
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Aij = = const

d; =7 =const
for each i, j; this corresponds to the above situation withq=e,p=fe,d=7e.
Introducing

r= [Ac'llc
ST _ T|Ac-1|

v, =z A Ly,
we may reformulate (2.5), (3.1) as

Blllxcll r + [l Ixe} + %, < x| (3.21)
BirsT + il A1 T < 1A

where we used the norm ||x]| =[xl = Zi [x;l . Then the formulae for ;, X; take on this

simple form ([22]):
Glixcll +7)r,
S
1 + Bvi
(3.3)
~ @lxcll +1)r
xi = (XC )i + -
1 - Bv,

1

(i=1,...,n). These formulae have a number of consequences. We shall mention here
only one of them : loss of significant decimals due to data rounding.

Assume that both left- and right-hand side coefficients of a system of linear equations
Ax = b have been rounded off down to © decimals, giving a system A.x. = b, . For

each 1, we will be looking for the maximal integer €; satisfying

Ix; - ()il 5 x 107E+D)

if nothing more is known of A, b but that A, b, are their rounded-off values up to T

decimals. Applying formulae (3.3) with B=7=5x 10°(m+1) , we get
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where we denoted [a],, = min{k; a <k, k integer }. Hence if £ — oo, then the value of

T — g, representing the loss of significant decimals, tends to a finite value o;.

In none of the numbers logo((lixIl + 1)r;) is integer, T = |A'1|e which is probably the
case in practical computations, then for

g = max; O'i

we obtain this expression in terms of x and Al
o= [logo(ixl + 1) 1A )] -
Another consequence of (3.3) may be found in [22] .

4. Inverse interval matrix

For a regular interval matrix AL the inverse interval matrix Bl = [B, B] is defined by
Bjj = min{A;"1; Ae A}
Bjj = max{A;l; Ae Aly

(i, j, = 1, ..., n). The following theorem shows a general method for computing Bl .
together with a necessary and sufficient regularity condition:

Theorem 4.1 ([21]). Let A_ be regular. Then Alis regular if and only if for each y
€ Y, the matrix equation

B = Dy |B] a1 @4.1)
has a unique solution By. In this case, there holds

Bjj = min{(By);;; ye Y}

Bjj = max{(By);;; ye Y}

4,j, =1,...,n). If Al is inverse stable, then in view of theorem 1.3 we have
By = Gy

Bj = By
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for each 1, j, hence only at most 2n matrices By must be computed If Alis strongly

regular, then the equation (4.1) can be solved by Jacobi, Gauss-Seidel or Kraczyk
iterations, as described in section 2.

If the coefficients are given with a uniform absolute error, i.e. Aij = B = const for
each i, j, then from (3.3) we obtain formulae [22]

|3r.< s

-1 '

B.. = (A ), - ——— =
-4 ¢ ij 1 + Bv
r. s

(A-l) —__B_l__"__

ij TR BY;;

where

Vij = T Ay,
¥(j) being the signature vector of the j-th column of Ac'1 . These formulae are valid if B
satisfies (3.22).

Arguing as in section 3, we may show that the maximal loss of significant decimals in
components of the inverse matrix due to data rounding is given by

o, = [log1oC ALl Ay )]

provided none of the numbers loglo(risj) is integer [22].
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