by

J. Rohn, Prague

Abstract. Exact bounds for eigenvalues of a symmetric interval matrix of the form $A^{r} = [A_{r} - rr^{r}]$, $A_{r} + rr^{r}]$ (A symmetric, r > 0) are given under assumptions that all eigenvalues of A_{r} are mutually different, the eigenvectors of A_{r} have nonzero entries and r is sufficiently small in norm to preserve these properties over A^{r} .

AMS subject classification: 65G10, 65F15

In this paper we investigate the eigenvalues of a symmetric interval matrix $\mathbf{A}^{\mathbf{I}} = [\mathbf{A}_{\mathbf{C}} - \mathbf{rr}^{\mathbf{T}}, \mathbf{A}_{\mathbf{C}} + \mathbf{rr}^{\mathbf{T}}]$, where $\mathbf{A}_{\mathbf{C}}$ is a symmetric nxn matrix and \mathbf{r} is a (column) vector whose all entries are positive. We shall give the results under three assumptions. First we shall assume that

(i) each $A \in A^T$ has n different real eigenvalues $\lambda_1(A) < \lambda_2(A) < \ldots < \lambda_n(A)$.

Then we may define the sets

$$L_i = \{ \lambda_i(A); A \in A \}$$
 (i = 1,...,n).

- Second we shall assume that
- (ii) $L_j \cap L_j = \emptyset$ for $i \neq j$ (i,j = 1,...,n) holds. Before formulating the third assumption, we first introduce, for any $a \in \mathbb{R}^n$, the matrix T_a as the diagonal matrix with diagonal vector a, and define $Y = \{z \in \mathbb{R}^n; |z_j| = 1 \text{ for each } j\}$. We assume
 - (iii) for each $i \in \{1,...,n\}$ there exists a $y_i \in Y$ such that each eigenvector x corresponding to an eigenvalue from L_i satisfies either $T_{y_i} x > 0$, or $T_{y_i} x < 0$.

Here the inequalities are to be understood componentwise. If we introduce the signature vector $\operatorname{sgn} x$ of a vector $x \in \mathbb{R}^n$ by $(\operatorname{sgn} x)_i = 1$ if $x_i > 0$ and $(\operatorname{sgn} x)_i = -1$ otherwise, then each eigenvector corresponding to an eigenvalue from L_i satisfies $\operatorname{sgn} x = y_i$ or $\operatorname{sgn} x = -y_i$. To simplify notations, denote $T_i := T_{y_i}$. Since eigenvectors corresponding to different eigenvalues of A_c are orthogonal, we have $y_i \neq y_j$, thus also $T_i \neq T_j$, for each $i \neq j$.

In the key part of the proof of Theorem 1, we shall use the following lemma, which is of independent interest.

Lemma. Let B be a regular nxn matrix and let p,q be non-negative vectors from R^n . Then the interval matrix $\begin{bmatrix} B - qp^T, B + qp^T \end{bmatrix} \text{ is singular if and only if } z^T r_p B^{-1} T_q y \geqslant 1$

holds for some z, y ∈ Y.

<u>Proof.</u> According to Theorem 6.3 in [2, p.44], $[B-qp^T, B+qp^T] \quad \text{is singular if and only if there exist}$ $\mathbf{z},\mathbf{y} \in \mathbf{Y} \quad \text{such that the matrix } B^{-1}\mathbf{T}_{\mathbf{y}}\mathbf{q}p^T\mathbf{T}_{\mathbf{z}} \quad \text{has a real eigenvalue } \lambda$ with $|\lambda| \ge 1$. Then $B^{-1}\mathbf{T}_{\mathbf{y}}\mathbf{q}p^T\mathbf{T}_{\mathbf{z}}\mathbf{x} = (p^T\mathbf{T}_{\mathbf{z}}\mathbf{x}) B^{-1}\mathbf{T}_{\mathbf{y}}\mathbf{q} = \lambda \mathbf{x} \text{ for some}$ $\mathbf{x} \ne 0, \text{ where } p^T\mathbf{T}_{\mathbf{z}}\mathbf{x} \ne 0 \text{ due to } \lambda \ne 0, \text{ hence premultiplying the }$ equation by $p^T\mathbf{T}_{\mathbf{z}}$ gives $p^T\mathbf{T}_{\mathbf{z}}B^{-1}\mathbf{T}_{\mathbf{y}}\mathbf{q} = \lambda$. Setting $\mathbf{z}: = -\mathbf{z}$ if $\lambda < 0$, we obtain $\mathbf{z}^T\mathbf{T}_{\mathbf{p}}B^{-1}\mathbf{T}_{\mathbf{q}}\mathbf{y} = p^T\mathbf{T}_{\mathbf{z}}B^{-1}\mathbf{T}_{\mathbf{y}}\mathbf{q} = |\lambda| \ge 1$.

In the main theorem to follow, we give exact bounds for eigenvalues and also prove that the extremal eigenvalues are achieved at some symmetric matrices from $\mathbf{A}^{\mathbf{I}}$:

Theorem 1. Let r > 0 and let (i), (ii), (iii) hold. Then for each $i \in \{1,...,n\}$ we have $L_i = [\underline{\lambda}_i, \overline{\lambda}_i]$

where

$$\frac{\lambda_{i} = \min \left\{ \lambda_{i}(A_{c} - D_{i}), \lambda_{i}(A_{c} + D_{i}) \right\}}{\lambda_{i} = \max \left\{ \lambda_{i}(A_{c} - D_{i}), \lambda_{i}(A_{c} + D_{i}) \right\}}$$
(1)

and

<u>Proof.</u> The proof consists of several steps. Let $i \in \{1,...,n\}$. (a) We prove that L_i is compact. If $\lambda \in L_i$, then $\lambda = x^T A x$ for some $A \in A^{I}$ and x satisfying $|x|_2 = 1$, hence L_i is bounded. To prove that L_i is closed, let $\lambda^j \in L_i$ (j = 1, 2, ...) and $\lambda^{j} \rightarrow \lambda$. Then $A^{j}x^{j} = \lambda^{j}x^{j}$ for some $A^{j} \in A^{T}$, $\|x^{j}\|_{2} = 1$, $T_{i}x^{j} > 0$ (j = 1,2,...) and there exists a subsequence $\{j_{k}\}$ such that $A^{j_k} \longrightarrow A \subseteq A^{j_k} \longrightarrow x$, $\|x\|_2 = 1$, $T_1 x \geqslant 0$, $Ax = \lambda x$. Since x is an eigenvector, it must be $T_ix>0$ due to (iii), thus x corresponds to an eigenvalue from L_1 ; this shows that $\lambda \in L_1$, so that L, is closed and thus also compact. (b) Next we show that $\lambda_i(A_c) \in L_i^0$, the interior of L_i . Take an eigenvector x of ${\bf A_c}$ corresponding to ${\bf \lambda_i(A_c)}$ and choose an $\varepsilon_{o} > 0$ such that $\sqrt{\varepsilon_{o}} |x| \le r$ and $(\lambda_{1}(A_{c}) - \varepsilon_{o} |x||_{2}^{2}$. $\lambda_{i}(A_{c}) + \varepsilon_{o} |x|_{2}^{2} \cap L_{i} = \emptyset$ for each $j \neq i$ (this is possible due to the assumption (ii) and the compactness of the $L_{j}^{\bullet}s$ established in (a)). Then for each $\mathcal{E} \in (-\xi_0, \xi_0)$ we have $A_c + \mathcal{E} xx^{\bar{T}} \in A^{\bar{T}}$ and $(A_c + \varepsilon xx^T)x = (\lambda_i(A_c) + \varepsilon ||x||_2^2)x$, hence $\lambda_i(A_c) + \varepsilon ||x||_2^2$ is an eigenvalue from L_i ; thus $\lambda_i(A_c) \in L_i^o$. (c) In view of (a), $L_i - L_i^0 \neq \emptyset$. Let $\lambda \in L_i - L_i^0$. We shall prove that either $\lambda = \lambda_i (A_c - D_i)$, or $\lambda = \lambda_i (A_c + D_i)$. Since the

interval matrix $\begin{bmatrix} A_c - \lambda E - rr^T, A_c - \lambda E + rr^T \end{bmatrix}$ is singular and λ is not an eigenvalue of A_c in view of (b) and (ii), the lemma above guarantees the existence of $z,y \in Y$ such that $z^T r_r (A_c - \lambda E)^{-1} r_r y \ge 1$. Assume for contrary that $z^T r_r (A_c - \lambda E)^{-1} r_r y \ge 1$. Then there exists an $\mathcal{E}_1 > 0$ such that $(\lambda - \mathcal{E}_1, \lambda + \mathcal{E}_1) \cap L_j = \emptyset$ for each $j \ne i$ and $z^T r_r (A_c - \lambda E)^{-1} r_r y > 1$ for each $\lambda' \in (\lambda - \mathcal{E}_1, \lambda + \mathcal{E}_1)$, which, again employing the lemma, gives that $(\lambda - \mathcal{E}_1, \lambda + \mathcal{E}_1) \subset L_i$ contrary to $\lambda \notin L_i^0$. Hence

 $\mathbf{z}^{\mathrm{T}}\mathbf{T}_{\mathbf{r}}(\mathbf{A}_{\mathbf{c}} - \lambda \mathbf{E})^{-1}\mathbf{T}_{\mathbf{r}}\mathbf{y} = 1$

holds. Put $\mathbf{x} = (\mathbf{A_c} - \lambda \mathbf{E})^{-1} \mathbf{T_r} \mathbf{y}$ and $\mathbf{p} = (\mathbf{A_c} - \lambda \mathbf{E})^{-1} \mathbf{T_r} \mathbf{z}$, then $\mathbf{z}^T \mathbf{T_r} \mathbf{x} = \mathbf{y}^T \mathbf{T_r} \mathbf{p} = 1$ and $(\mathbf{A_c} - \mathbf{T_r} \mathbf{y} \mathbf{z}^T \mathbf{T_r}) \mathbf{x} = \mathbf{A_c} \mathbf{x} - \mathbf{T_r} \mathbf{y} = \lambda \mathbf{x}$, $(\mathbf{A_c} - \mathbf{T_r} \mathbf{z} \mathbf{y}^T \mathbf{T_r}) \mathbf{p} = \lambda \mathbf{p}$, hence \mathbf{x} and \mathbf{p} are eigenvectors corresponding to λ (since $|\mathbf{T_r} \mathbf{y} \mathbf{z}^T \mathbf{T_r}| = \mathbf{rr}^T$, implying $\mathbf{A_c} - \mathbf{T_r} \mathbf{y} \mathbf{z}^T \mathbf{T_r} \in \mathbf{A}^T$; similarly $\mathbf{A_c} - \mathbf{T_r} \mathbf{z} \mathbf{y}^T \mathbf{T_r} \in \mathbf{A}^T$). We shall prove that $\mathbf{z_j} \mathbf{x_j} > 0$ for each \mathbf{j} . In fact, assuming $\mathbf{z_j} \mathbf{x_j} < 0$ for some \mathbf{j} (the possibility of $\mathbf{z_j} \mathbf{x_j} = 0$ is precluded by (iii)), for $\mathbf{z} \in \mathbf{y}$ given by $\mathbf{z_j} = -\mathbf{z_j}$ and $\mathbf{z_k} = \mathbf{z_k}$ for $\mathbf{k} \neq \mathbf{j}$ we would have $\mathbf{z}^T \mathbf{T_r} (\mathbf{A_c} - \lambda \mathbf{E})^{-1} \mathbf{T_r} \mathbf{y} = \mathbf{z}^T \mathbf{T_r} \mathbf{x}$ $\geq \mathbf{z}^T \mathbf{T_r} \mathbf{x} = 1$ contrary to $\lambda \notin \mathbf{L_1^0}$, as before. Hence $\mathbf{z} = \mathbf{sgn} \ \mathbf{x} = \pm \mathbf{y_1}$ and in a similar way, $\mathbf{y} = \mathbf{sgn} \ \mathbf{p} = \pm \mathbf{y_1}$. Since, as established above, λ is an eigenvalue of $\mathbf{A_c} - \mathbf{T_r} \mathbf{y} \mathbf{z}^T \mathbf{T_r}$, there holds either $\lambda = \lambda_1 (\mathbf{A_c} - \mathbf{T_r} \mathbf{y_1} \mathbf{y_1^T} \mathbf{T_r}) = \lambda_1 (\mathbf{A_c} - \mathbf{D_1})$, or $\lambda = \lambda_1 (\mathbf{A_c} + \mathbf{T_r} \mathbf{y_1} \mathbf{y_1^T} \mathbf{T_r}) = \lambda_1 (\mathbf{A_c} + \mathbf{D_1})$.

(d) We have proved that L_i is a compact set with nonempty interior and (at most) two boundary points. Hence $L_i = [\underline{\lambda}_i, \overline{\lambda}_i]$, where $\underline{\lambda}_i, \overline{\lambda}_i$ are the two boundary points, satisfying (1) in view of (c), and both A_c-D_i and A_c+D_i are symmetric.

Next we prove that each $\lambda \in L_1$ is an eigenvalue of a matrix

in some special form:

Theorem 2. Let r > 0 and let (i), (ii), (iii) hold. Then for each $\lambda \in L_i$, $i \in \{1, ..., n\}$, there exists a $t \in [-1, 1]$ such that $\lambda = \lambda_i (A_c + tD_i)$.

<u>Proof.</u> The assertion obviously holds for $\lambda = \lambda_{\mathbf{i}}(\mathbf{A_c})$ with $\mathbf{t} = 0$. If $\lambda \in \mathbf{L_i}$, $\lambda \neq \lambda_{\mathbf{i}}(\mathbf{A_c})$, then $\mathbf{z_o^T}_{\mathbf{r}}(\mathbf{A_c} - \lambda \mathbf{E})^{-1}\mathbf{T_r}\mathbf{y_o} \ge 1$ for some $\mathbf{z_o}, \mathbf{y_o} \in \mathbf{Y}$. Hence if $\mathbf{z}, \mathbf{y} \in \mathbf{Y}$ satisfy

 $\mathbf{z}^{\mathrm{T}}\mathbf{T}_{\mathbf{r}}(\mathbf{A}_{\mathbf{c}}-\lambda\mathbf{E})^{-1}\mathbf{T}_{\mathbf{r}}\mathbf{y} = \max \left\{ \begin{array}{c} \overline{\mathbf{z}}^{\mathrm{T}}\mathbf{T}_{\mathbf{r}}(\mathbf{A}_{\mathbf{c}}-\lambda\mathbf{E})^{-1}\mathbf{T}_{\mathbf{r}}\overline{\mathbf{y}}; \ \overline{\mathbf{z}}, \overline{\mathbf{y}} \in \mathbf{Y} \right\} \\ \text{then for } \mathbf{x} = (\mathbf{A}_{\mathbf{c}}-\lambda\mathbf{E})^{-1}\mathbf{T}_{\mathbf{r}}\mathbf{y}, \ \mathbf{p} = (\mathbf{A}_{\mathbf{c}}-\lambda\mathbf{E})^{-1}\mathbf{T}_{\mathbf{r}}\mathbf{z} \text{ we obtain, in} \\ \text{a similar way as in the part (c) of the above proof,} \end{array}$

$$\mathbf{s}^{\mathbf{T}}\mathbf{T}_{\mathbf{r}}\mathbf{x} = \mathbf{y}^{\mathbf{T}}\mathbf{T}_{\mathbf{r}}\mathbf{p} \geqslant 1$$

$$(A_c - \frac{T_r y z^T T_r}{z^T T_r x}) x = \lambda x$$

$$(A_{c} - \frac{T_{r}zy^{T}T_{r}}{y^{T}T_{r}p})p = \lambda p$$

and the optimality of z,y gives $z = \operatorname{sgn} x = \pm y_1$, $y = \operatorname{sgn} p = \pm y_1$ implying $\lambda = \lambda_1(A_c + tD_1)$ where $t = \pm \frac{1}{z^{T_T}r^x}$, so that $t \in [-1, 1]$.

Finally we show that for each $\lambda \in L_1$ (i = 1,...,n), the set of all eigenvectors corresponding to λ

$$X_i^{\lambda} = \{ x_i \ Ax = \lambda x , A \in A^{I}, x \neq 0 \}$$

can be described by a system of linear inequalities;

Theorem 3. Let r > 0 and let (i), (ii), (iii) hold. Then for each $\lambda \in L_i$ (i = 1,..., n), the set X_i^{λ} is given by

$$(A_{c} - \lambda E - \mathbf{rr}^{T} \mathbf{T}_{1}) \mathbf{x} \leq 0$$

$$(A_{c} - \lambda E + \mathbf{rr}^{T} \mathbf{T}_{1}) \mathbf{x} \geq 0$$

$$\mathbf{x} \neq 0.$$
(2)

Proof. If $x \neq 0$, then $x \in X_1^{\lambda}$ if and only if $(A - \lambda E)x = 0$ for some $A - \lambda E \in [A_c - \lambda E - rr^T, A_c - \lambda E + rr^T]$, which, in turn, is equivalent to $|(A_c - \lambda E)x| \leq rr^T|x|$ (Oettli, Prager [1]). Setting $|x| = T_1 x$, we obtain (2).

In the special case of $\operatorname{rr}^T = \beta \operatorname{ee}^T$, $e = (1,1,\ldots,1)^T$, $\beta > 0$ (uniform tolerances), we have $D_i = \beta y_i y_i^T$ and the normalized eigenvectors from X_i satisfying $\|x\|_1 = \sum_i |x_i| = 1$ are given simply by

$$-\beta e \leq (A_c - \lambda E)x \leq \beta e$$
$$y_i^T x = 1.$$

References

- [1] W.Oettli, W.Prager, Compatibility of Approximate Solution of Linear Equations with Given Error Bounds for Coefficients and Right-Hand Sides, Numerische Mathematik 6 (1964),405-409
- [2] <u>J.Rohn</u>, Interval Linear Systems, Freiburger Intervall--Berichte 84/7, 33-58

Author's address:

J.Rohn

Faculty of Mathematics and Physics
Charles University
Malostranské n. 25
118 00 Prague 1
Czechoslovakia