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Abstract. Simple formulae are given for the exact bounds

on the solution of a linear interval system APx = ¥ where

the radius of AF is of the form gpT . The results are
applied to evaluating loss of significant decimals due to
input data rounding, constructing new condition numbers for
linear systems and matrices, investigating the expansion of
bounds due to preconditioning and bounding the residuals.

AMS Subject Classifications : 65G10, 65F35

0. Introduction

For a linear interval system AIx = bI with square

I ’, ”,
A:[A-A,A+A]={A;A-A$AS.A+A} and
bI=(b-d,b+d]={b’;b-d£—b'.{~b+d},theso—

lution set is defined as X = {x'; A'x’ = Db, A€ AI, b€ bI}

and the exact bounds on the solution are given by
min{xi; x" & X}

max{x;;x'e X}

I
n

“l
i

we descri-

(i = 1,+.4,n). In our previous papers (6] - [8] ,

bed general, but complicated methods for computing Xio X5

In the present paper we show that if the radius A of the

interval matrix AI is of the form

A = ap (0)
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for some nonnegative (column) vectors q,p (a so-called

rank one perturbation), then, assuming that q, p and d
are sufficiently small, the bounds X ;i can be compu-
ted by using simple formulae derived in section 1.1. These

formulae take on an attractively simple form in the common

special case
.- = const
13 = F

d.
i

J’ = const

(section 1.2, Egs. (3)). In the second part of the paper,

we apply the explicit results obtained in the firsg part to
some special problems : evaluating the loss of significant
decimals due to input data rounding, constructing new con-
dition numbers for linear systems and matrices, investigating
the expansion of the bounds X5 ;i due to preconditioning
and deriving bounds on residuals. Since all the results are
sharp, they offer a closer look onto the nature of these
problems.

The possibility of expressing the bounds explicitly for
prob}ems satisfying (0) was discovered by Hansen (2] who,
however, did not elaborate the results. The original impetus
to this work came from my discussion with Dr. D.Hudak and
Dr. G.Richter at the interval symposium in Dresden in June
1986, who drew my attention to systems satisfying (O); my

thanks are due to them.
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1. Formulae

In the first part of the paper, we prove the main result

(section 1.1, formulae (1)) and consider some special cases

(section 1.2).

1.1. Main result

Consider a linear interval system

(a - ap’, A + apilx'= [b -d, b+ dl

where A is a regular nxn matrix and b,q,p,d € rR" 5

4,p,d nomnegative. We denote

1

x=A"Db
d=1aYa
qd=(a"a
p=p a7,

where, as usual, lA_1| stands for the matrix formed by the
absolute values of the coefficients of A“1 . Hence E,E,E

are again nonnegative. Next, for each i€ {1,...,n} we

introduce the numbers

A

T -1
z T A T vy.
p qyl

i
T, -1
(ui =z TpA Tdyi 5

where, for each a & R" . Ta denotes the diagonal matrix

with diagonal vector a , 2z is the signature vector of X
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(defined by =z, =1 if xj-; 0 and =z, = -1 otherwise)

Yy is the signature vector of the i-th

and, similarly, L

1 (notice : the "T" in zT denotes the trans-

row of A~
pose vector; not to be mixed with Tp). We shall introduce

two assumptions :
: tad T- -1 -1
(1) @'+ (M) a7 < (a7
. T =\ = T-\= T
(i) p (Ix) + )3 + (1-p a@)d + (p a)lxl <lxl .
The meaning of these assumptions will become clear from the
parts (b), (d) of the proof below. Here we only mention that
they are satisfied if all entries of A—1 and x are nonzero
and if q,p and d are sufficiently small.
Now we may formulate our main result
Theorem. Let (i); (ii) hold. Then for each iEi{1,...,n}
we have

(o'xl - m )3

, =X, -4, =-
X i i 1 + Xi

(1)
(pThxl +my)a,

x; = xi + di + T =N

i
Proof. The proof goes through several steps.
(a) From (i) it follows (pTa) lAfdl < IA-1l , hence
pT(_l £1 , Put A = qu and D = IA_1|A = a_prl , and let
:? = ? (D) , the spectral radius of D. Then Dx = apTx = ? X

for some x # 0. Hence either pTX = 0 , implying y =0 ,



or pTx #Z 0 , in which case premultiplying the above equation

T G T- . =
by p  yields SJ = p q,in both the cases 9(1 . Hence the
: . I T T A
interval matrix A = [A - ap , A + qgp J is regular due to
Beeck’s criterion [1) . Moreover, for each i €& { 1,000 ,n}
we have ‘Xl] < pTa <1 .

- T 2 - T=\ T T'=

(b) For D = gp we have D = q(p q)p = (p q)D ’

and by induction pJ = (pTa)J_1D y, j 2 1. Hence the matrix

C = D(E-D)~" satisfies C =D + D> + ... =[1 + p'q +

- 1
+ (qu)2 + ...J D = 7—— D and rearranging the condition (1)
) T-pq
gives
"
cla™l = —= < |47
1-p'q

which means (see [6, p.10] and [ 7, p.ZL}J) that AI is

inverse stable, i.e. the coefficients of the inverse matrix
. . I
preserve their signatures over A .

(¢) In [6],{71,(8] it was shown that for each y & Y =

_ {YG Rn; ly‘\jl = 1 for each j} , the nonlinear equation

~
X

1}

-1 o~ -1
AT A b T d
LAITL+ AT (0 s T a)

has a unique solution xy. . Let t ©be the signature vector

of x_ , then |x_ | = T,x_ and x_ satisfies
y y tTy y

-1 T -1
X =X+ A T.d4d + T ,x )J)A T .
y ¥’ (p Tyx,) v

T, -1
Set °<'y' =p Ttxy‘ , then xy' = x + A

premultiplying this equation by. pT’I‘t gives

-1
T d + AT'T and
y °('y‘ yd
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pTT (x + A‘1T,d)
o = t T M ,
y -1
1 - T A T q
p T, v

and finally

T S
_ pT,(x + AT T 4d)
X =X + A 1T d + £ T = Y A_1T q. (* )
y y 1 - p T AT T Y

This expression, however, still contains an unknown signature
vector t .
* . _ _
() From (™) , using the fact that [T | = ‘Ty1 =

= unit matrix and that ‘pTTtA"1T§q1 < pTa < 1 , we obtain

T -
_ pr (x| +d) _
-x|£d+ ——————g—a <xl o,

| x
& 1 -paq

the last inequality‘beihg a consequence of the assumption (ii).
This shows that xy and x lie in the interior of the same
orthant, hence t is equal to =z , the signature vector of x.

(e) From the general theory in [6],[7] it follows,

in view of the inverse stability established in (b), that

x, = (x'yi)i ) X, = (xyi)i ; where 1y, is the signature
vector of the i-th row of A_1 . Since (A_1Ty'd)i S ai and
i
(A_1T\ a). = a. , from (*) (with y:=y, and t:= z) we
y; i i i

directly get

(similarly for Ei) , which proves (1). B
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To determine x and x using (1), we must solve the
linear system Ax = b , compute the inverse matrix A_1 and
evaluate the quantities a,ﬁ,a,cgi,Air (i:1,...,n), hence
x,Xx may be found in O(nj) arithmetic operations.

Notice that if qu = 0 (i.e. the left-hand side matrix
contains no interval coefficients), then the bounds are given
by x=x-d , X =x + d ; hence the fractions in (1) amount

to the influence of the input data errors in the matrix

coefficients,.

As seen from the proof, the assumptions (i), (ii) provide
for the signature stability of both the inverse matrix and

the solution vector (cf. theorem 2 in [6] ).

1.2. Special cases

-

Under additional festrictions on q, p and d , formu-
lae (1) take on simpler forms.

Consider first the case d = J‘q , where ]‘ is a non-
negative real number. Then (i) remains the same, (ii) redu-
ces to

(1) ('lxl + )3 + G DI <ix|
and, since (uia = Xia for each i , formulae (1) now have

the form
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(pT1xl « )3,

E, = X, =-
1 = 1 +A..
1
(2)
(" Ix] +P)a
- i
x. = X, +
1 1 1 - X
L
Notice that X, - x, > x, - x, iff A,D> 0 and
L . 1 -1 1

xi-xi<xi-£i iff li-(O.

Second, consider a more special case

Aij = /S = const

di = aﬂ = const (i,§=1,40. ,n)
that corresponds to p = [S e, gq==¢, d = J'e, where
e = (1,1,...,1)T. Define

r = IA_1, e
ST =- eTIA-1I
T, -1 .
Vi = Zz Ay, (i=1,+..,n) ,

then (i), (ii) can be reformulated as

(1) AL=s™ + =t [a7] < (a7l

(1i,) A L=l =+ et 1x]] + Pr <Ixl

where we used the 1-norm x| = II:':]]1 = Z lxi‘ . For x,x
i

we then get



([SHX" +J' )ri
=i i 1 + {Gvi

_ ( Blixh +§)r;
e t- A

Wl
1

Finally, in the case /S ;r (all the coefficients are

given with a uniform absolute error), wec have

ﬂ (Ix“ + 1)ri

X =% 7
1 + /J.Vi
(&)
_ ﬁ (=l + 1)ri
Xi = xi + -
1 - (’.Wi
In this case, ﬂ is specified by the assumptions

. S -1 -1
(1) Ales™ « w=l a7 < a7 )

(i1y) AL+ e+ Wl Ix1] <Ix]

which are equivalent to ﬁé [0, (50), where {XO can be
easily computed from (5) as the minimum of ratios of the
respective coefficients,
Notice that in the last case, all the quantities r, s,

Vi (30 appearing in (4) and (5) depend on A and x .
Hence setting /S - O+ , we may get some assertions con-
cerning the sensitivity of a given real (not interval) 1li-
near system Ax = b . This will be done in the second part

of the papecr.

YHYEd Vv900104



The results obtained can be also used for the evaluation

of the inverse interval matrix (AI)—'1 =(B, B] @given by

. -1 I
'Ei.j min {(Ao )ij . Aoé A}

B -1 I o
Bl‘] = max {(AO )_LJ ) AOE A.} (1,‘]_1’_-.,11)‘

We shall give the results only for the (most interesting)
case AI = CA - ﬂeeT, A+ ﬁeeTJ . Since the j—th columns
of B, B form the exact interval solution of the linear

interval system AIx = ej , Where ej is the j-th column

of the unit matrix, from (3) (with r =0 and lxl = Sj)
we obtain
-1 ﬁris.

E, . = a. .
LJ +J 1 +/3)’ij

(6)

= -1 Brys; . .
Bij = aij o —2l (i,d=1,¢-0,m)
1 -8V

-1 -1 ~T -1 ~

A - =Yy g bei
where (aij) and vij yJ.A Yy o Yy eing the
signature vector of the j-th column of A_1 . In this case

(113) is identical with (13), so that ﬁ is bounded only

by the condition

(13) {&[rsT + Ml IA—”J < IA—”.
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2. Applications

Tn the second part, we give some consequences of formulae (3),
(#). In the subsequent sections, we study the loss of signi-
ficant decimals, propose new condition numbers, investigate

preconditioned systems and give bounds for residuals.

2.1. Loss of significant decimals due to data rounding

Assume that both left- and right-hand side coefficients

of a system of linear equations

have been rounded off to T decimals, giving a system

Here we will handle the problem of determining the number of
significant decimals in x , i.e. for each i€ {1,...,11} we

will be looking for the maximal integer d"i satisfying

(& +1)
lx{ - x;| £ 5x10
if nothing morc is known of A°, b’ but that A,b are their
rounded values up to W decimals.

Clearly, each such x° is an element of the solution

set X of the system of linear interval equations

(a-p8 ceT, A+ ﬂ eeTJx’: {b - ﬁe, b + .ﬁe_]
with

/3 - = x 10-(7 +1).

oy
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Hence, if ﬁ is sufficiently small to satisfy (5), we may

use formulae (4) to get

(S ( [ +1)ri
1 - plvil

which shows that A‘i is the maximal integer satisfying

R —
max | x] - x.f = max{x.—x. ,x.—x.} =
i i i TitTd =i

—(C;‘.+1)

A=l +1)r; € sxio 2

1 - /Slvil

Taking log on both sides of this inequality, we obtain
10

(=< +1)r~i
(;.:'Ir—[log‘lo 1_(-“1’1’_]

* 0

where we denoted [a]o = min{k; ag k, k integer} (so that
[a.]o = [a] if a is integer and [a]o = [a] +1 otherwise).

Hence the number

(UIxl +1)r,
{108‘10 T = P'Vill JO= T - A\i

represents the loss of significant decimals due to input data
rounding (although this loss may be negative since the possi-
bility of T - J‘i £ 0 is not excluded)., If T — o= (equi-
valently, /3-"'O+ ), then T - Ji tends to a finite value Gvi_
given by
[log10((l|xu +1)ri)}o + 1 if Vi Z 0 and
G;_ _ log1o(("xu +1)ri) is integer
[log10((l|x|| +1 )ri)Jo otherwise
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which shows that the loss becomes constant from some 7Tb On.

Notice that

i

(x| +1)r,
[103‘10 1 - @h)ll ]0>

for each ﬂ:>0 since the left-hand side function is non-

decreasing in F . Thus the value of

GJ: ma}x 6-/.. ]

1

computable in terms of A‘1 and x , gives an information
about the numecrical stability of the system Ax = b . Notice
that if none of the numbers log10((llxﬂ +1)ri), i=1,...,n ,
is integer, which is very probably the case in practical

computations, the we have

6 = [rosg((Nxl +1) 17, )]

(since max r, = max:éi,a71l = “A—1” ; recall that
5 i . - ij oo
i i
U<t = U=y =3 [x;]).
. a1
i
Similarly, if a matrix A’ is rounded off up to T
decimals to yield a matrix A , then an analogous reasoning
based on (6) gives for the number dﬂij of significant
decimals in the ij-th coefficient of A—1 the formula

é,ij = T - [10310 —td ]
1 - RVl 0

and again,
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T - crij-—?(:"’ij as W~ © , where

[log1o(risj)10+1 if vij £ 0 and
G;j = l°g1O(riSj) is integer
[logm(risj)lo otherwise.

If none of the numbers l°g10(risj) is integer, then

e th [108,, a7 a7 U],
. -1 -1
(since m?x Sj = m.:;nj.x Zl-_ laij‘ = "A “1) .

Example., For Hilbert’s 3X3 matrix (Aij = 1/(i+j-1)

for i,j = 1,2,3) we have "A_1U1 = “Aﬁ1uu, = 408, so that
G;A= 6 . Hence a loss of about 6 decimals can be expected

when inverting A on a computer (not taking into account

additional errors arisifig during the computation).,

2.2. Condition numbers

The asymptotic behaviour of relative errors, given by (&)
and (6), shows a way how to define new condition numbers for
linear systems and matrices.

To endorse the dependence upon ‘K , denote the corres-

ponding solution set by XA . Then we have

= -oxyl &Nl +1)r,

x'e X ' B B (1- ﬁ)uix JJEN

hence
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x. | T,
il (xl w1) =

|xi| Ix.

%]

1im Sh s m a x
18-904. F KIGXF

Thus we may propose a new condition number for linear systems

£

T,
c(ap) = (hxl +1) max — L.
i 1=l

It shows that if ’A is sufficiently small, then the maximal
relative error is equal to about ﬁ c(A,b).

Similarly, on the base of (6) we may propose a condition

number for matrices

c(A) = max ———%TJ—— .
i, laf}l

Here we have c(A)2» max {“A_1u 19 ] A—1"°‘} . Contrary to usual
condition numbers, as "AH”.A-W , here an i1l behaviour of a
single element may'infi;ence the condition number, which may
lead to different results. Comparison on test examples (not
performed by the author) is necessary to check the usefullness

of these condition numbers.

2.3. Preconditioned systems

In this section we shall investigate the effect of pre-

conditioning of the linear interval system

T
[a- e, A+ BecTlxa[b- e, b+ el (7)
upon the bounds on its solution. Preconditioning, i.e. pre-
in interval arithmetic,

-1
multiplying the whole system by A

leads to the system
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CE— (greT,E+ﬁreTJ x’:[x-yr,x+d4r_] (8)

where E is the unit matrix and, as before, r = (A_1] e .
Preconditioning was proposed by Hansen and Smith (3] to
bring the original system (7) to a form more suitable for
interval Gauss elimination. Naturally, the solution set grows
as a result of preconditioning, hence the exact bounds x, £

for the solution of (8) satisfy x £ x, x £ % . To compute X
and ¥ , we cannot apply directly the main theorem, since the
condition (i) is violated for (8) (E contains zeros), but we

may follow another way by computing the vectors ';y' for the

system (8). As in the part (c) of the proof, we can derive

‘AeTTtx +r
= X +

¥ 1 -4 olT I,T y

where +t is the signature vector of ’;y‘ . Assuming that (i2)
and (iiz) hold for the original system (7), we have [,leﬂ < 1
and

Uxl +
";c'-x[</3—a4—-r<|x‘ ;

<
y 1 - ﬂ" rl
hence, as in the part (d) of the proof, we conclude that ¢t = =z

and thus we get

il
Ax“+3" N

r

';c'. = X + 5
y T Y
1 - (39 TZT'yr
Here =z is the signature vector of x , while y & Y was

arbitrary so far. According to the general theory ( [6J , theo-

rem 2), ;j_ is achieved at some (;y')i . Hence, to make (J'E'y)i
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as large as possible, we must in the light of (9) take ¥y
and choose y., j £ i , so as to maximize the value of

T,
e TTr= z.y.r., ; this gives . = =z, for j i and
z oy EJ: JyJ il & }’J j J Fé

(AN gy
1 i 1 - ﬂil

where
ac,izziri+ %"rj: ﬂrl—ri+ziri‘
J#L
In a simiiar way we would obtain

(Bl=xl+d)r;

Xi T %
1 -f2 .
®,

with
—1i i i7i

Finally, we get

(Bl +3)x; A(E, -V ))
LT (-p®) (1 - BY)

(RlxE +§)r, A2, +Y))

x5 ~A& ¢
(1 - p%,)(1 +QV,)
which in the special case of J‘ :(J implies

S S (%; -V,)

1lim = (llx}| + 1)r, (28, =-V.

(3_’O+ F I ) 1 1 1
RS

Lim — o7 — = (hxll + 1)ri(_a_ﬁi +Vi) ,

pro, B
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confirming the well-known Miller’s result in (4] that

% -X = o(/32), X - X = o(ﬂz). Finally, for the difference

df the radii ratio from 1 we have

~
1 i T A
l_,im _ﬂ—( — - 1) = ¥ri - T
g0, X3 T &
cf. Neumaier [5] , theorem 3. ’

2.4, Bounds for residuals

For each element x° of the solution set X of the 1li-
)
near interval system [A - (G eeT, A+ AeeTJ x =[b- ffe,b+ a"e_-f
define its residual by

I_‘_es(x') = Ax* - b .

Using again the fact that the maximal value ros, of (res(x'))j

must be achieved at some xy‘ and that for each y & Y ,

glxll +§
Ax - b =
y 1 -ﬁ zTA‘1y'

v

holds, arguing as in the preceding section, we get

ﬁllxﬂ +d
ZE‘GSi = -
T (Mfi

Aﬂxl[ +

res, = = ——

' 1"/“?1
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where
3;i = eTIEI - I;il + Ei
Y¥,o=eNE -1z -
ET = ZTA-1 .

Especially, if {

1

Y
i
=
e

res,
1im _— = = lim = "x" + 1 .

Ao, f fro, [

Tt is remarkable that the limit value is independent of

and 1s always greater or egual than 1.
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