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bei [A]in beiden Fallen [2]f = [0.633333, 0.933334] = —[x]3"; bei [A] gilt jeweils [Z]» = [0.666666, 0.666 667] =
= (&g
Die Rechnungen wurden auf einem KWS SAM 68K Computer in der Sprache PASCAL-SC [2] durchgefiihrt.
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Inverse-Positive Interval Matrices

An n X n interval matrix A = {4; 4 < A =< A4} is said to be inverse-positive if 41 > 0 for each 4 ¢ AT (the
inequality is to be understood componcntwnsc) . We give herc two new necessary and sufficient conditions for inverse-
positivity together with a simple proof of KUTTLER’s criterion[1] (assertion (ii) below). A7 is called regular if det 4 540
for each 4 € A’ and ¢ denotes the spectral radius.

Theorem 1: The following asseriions are equivalent:

(i) A’ 7s inverse-positive,

(i) A1 = 0and 41 =0,
(i) A1 = 0 ond p(d M4 — 4)) < 1
(iv) A1 =0 and A’ is regular.

Proof: Denote Dy = A1 4 — A). We shall prove (1) = ()= (i) = (1), (@)= ({v)= (). @)= @) is
obvious. (ii) = (iii): Since Dy = O and (E — Do) 1=A4'4 =F+ A4 — A) = 0, we have p(D,) < L. (iii) = (i):
For (,u,uh A€ A* there holds 4 = A(F A4 — A)) since Q(A A — A)) < p(Dy) << 1, we have A1 =
= ( Y‘ (A 14 — A) ) A1 = 0. (i) = (iv) is again obvious. (iv)=> (ili): Assume that » = p(D,) = 1, then Dyz =
= A" 1(A A) @ == ra for some z 5= 0, implying (A + =4 — A))x =0, hence 4 + — (A A) e A? g singular,
a contradiction. lh1s completes the proof.

Thus we have also proved the following result.

Theorem 2: Let A be inverse-positive. Then for each A € A" we have At = (Z (A4 — Ay) A

Let us recall that, given an interval n-vector b == [b, b], the exact interval solutuon a! == [, 2] of the system

of interval linear equations A%x = b’ is defined by #; = min x;, ¥, = max z; (i = 1, ... , n), Wherc X = {x; Ax = b,
_ X

A€ A',beb'). For inverse-positive matrices A’ satisfying 4™ >> 0, the exact interval solution can be computed
by an iterative method. For the purpose of its formulation, denote 4, = 4 (4 4+ A4), 4 =+ (A — 4) = 0, and
for any & = () € B", let x| = (|@i]).

Theorem 3: Let A~1 > 0 and A1 > 0. Then, we have & = lim 2y, © = lim &y, where the sequences {Tn }§°,
{Zm }§¢ are given by o0 moroo

B = A, g = —AT Akl + A58 (m=0,1,2,..)

and ~
Ty = A7, Typr = A7 A[Zml—l-A_lb (m=0,1,2,..).
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For the proof of this theorem, see {3]. The convergence of both the sequences is guarranteed by the next
theorem, which can be proved in the same way as implication (iv)=> (iii) of theorem 1.

Theorem 4: Let AT be snverse-positive. Then g(d;*4) < 1.

Under an additional assumption, the exact interval solution «” can be expressed explicitly. This is a generali-
zation of the result by Barrit and NUDING [2] (their condition b = 0 implies 4726 = 0). -

Theorem 5: Let A! be inverse-positive and let A™1b = 0. Then we have x = A7, Z = A~ b,

Proof: Foreach 4 ¢ A7, b ¢ b’, theorem 2 implies A~ = (¥ (44 - A))) A7 = A7, hence x = A%,
=0

J —
Secondly, if Az = bfor some 4 ¢ 47, b¢ b’ then & > & > 0, hence 4z < Az = b < b and premultiplying by 4™
yields x <X 47%b; hence T = 4.
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A Defect Correction Method on (—oo, o)

The boundary value problem
—u + Atyw =g(t), te(—o0, ), w0, t-»+too (1)

will be considered. We assume A(f) — Ao, ¢ — £ 00, Re A := 3 (4 + AT) = a® > 0, 4, g smooth. Our aim is
the computation of high accuracy solutions.

In the treatment of problem (1) two kinds of discretizations are needed. The first has to deal with the differen-
tial equation. Here, good approximations are possible e.g. with high order difference expansions of the second
derivative d?/di?. The simplest is (D2 xy): := h~Hy;_1 — 2y; - ¥i11] and leads to the system

—Dg nys + Alt) ¥ = g; 1= g(ts) » t; =il , icZ. (2)

This ordinary difference method has order h2.

The second approximation is needed for the infinite interval (— co, co). This is usually truncated by introduc-
ing addjtional boundary conditions at finite cndpoints (here we consider only the right hand end, ¢ = ¢), for in-
stance the simple condition u(f,) = 0, with an error O(e" 2 u(ty)), t, — o, or the asymptotically optimal condition
w'(tr) 1 (Ae)* u(ty) = 0 of DB Hooc and WEIss [4] and LeNtiNr and KELiER [5] which introduces an error
O(e=* g(t,)), &y — oo, with respect to any given point ¢.

For differential equations the construction of high order approximations is well understood. But the cited
boundary eonditions give only “first order” approximations with respect to the behaviour of g(f,), t — oo

First, we consider the construction of discrete boundary conditions in the constant coefficient case.

Lemma 1: Let the coefficient matriz A be constant, Re A = «? > 0. Then

a) There exisis a unique matric M, || M| < 1 with M + M~ = 21 + h24.
b) At any index r the solution y of (2) satisfies the equation

~Yr—1 + My, = 0% Y Mg, ; =:GQ,. ®)
o

Remark: By using equation (3), and a similar onc at an index I <7 r, as discrcte boundary conditions for the
infinite discrete problem (2) its “exact’ solution can be computed by solving a finite system with block-tridiagonal
matrix.

Surely @, in (3) is not known, but one can compute it with high accuracy by a series transformation, e.g.
the g-algorithm, which, under suitable assumptions, has for a fixed number 2k of coefficients g; in (3) an error
O(e=* g(t)¥), t, — co. This can be derived from a result of Graca [3].

Thus (3) gives an high order approximation for the interval (— co, co), too. |l




