INNER SOLUTIONS OF LINEAR INTERVAL SYSTEMS

J. Rohn Charles University Prague/Czechoslovakia

A vector $x \in \mathbb{R}^n$ is called an inner solution of a system of linear interval equations $A^I x = b^I (A^I = [A, \overline{A}] = [A_C - \Delta, A_C + \Delta]$ of size mxn, $b^I = [b, \overline{b}] = [b_C - \delta, b_C + \delta]$ if $Ax \in b^I$ for each $A \in A^I$ (for a motivation, see [1]). Denote by X_i the set of all inner solutions. We have this characterization:

Theorem. $x \in X_1$ if and only if $x = x_1 - x_2$, where x_1, x_2 is a solution to the system of linear inequalities

$$\overline{A}x_1 - \underline{A}x_2 \leq \overline{b} \\
-\underline{A}x_1 + \overline{A}x_2 \leq -\underline{b} \\
x_1 \geqslant 0, x_2 \geqslant 0.$$
(S)

Proof. Due to Oettli-Prager theorem, $\{Ax; A \in A^I\} = [A_Cx - \Delta|x|, A_Cx + \Delta|x|]$. "Only if": Let $x \in X_1$, then $b \le A_Cx - \Delta|x|$ and $A_Cx + \Delta|x| \le \overline{b}$; substituting $x = x^+ - x^-$, $|x| = x^+ + x^-$, we see that $x_1 = x^+$, $x_2 = x^-$ satisfy (S). "If": Let x_1, x_2 solve (S); define $d \in \mathbb{R}^n$ by $d_1 = x^+$ and $|x_1| = x^+$, we have $|x_1| = x^+$. Then $|x_1| = x^+$ and $|x_1| = x^+$ and

As consequences, we obtain: (i) X_i is a convex polytope, (ii) each $x \in X_i$ satisfies $\Delta |x| \le \delta$ (by adding the first two inequalities in (S)), (iii) X_i is bounded if for each j there is a k with $\Delta_{kj} > 0$ (since then from (ii) follows $|x_j| \le \delta_k / \Delta_{kj}$), (iv) $X_i \ne \emptyset$ if and only if (S) has a solution, which can be tested by phase I of the simplex algorithm, (v) for $x_j = \min\{x_j; x \in X_i\}$ we have $x_j = \min\{(x_1 - x_2)_j; x_1, x_2 \text{ solve (S)}\}$, which is a linear programming problem (similarly for $x_j = \max...$), (vi) nonnegative inner solutions are described by $\overline{A}x \le \overline{b}$, $-\overline{A}x \le -\overline{b}$, $x \ge 0$, (vii) also, $x_i = \{x; |A_c x - b_c| \le -\Delta |x| + \delta\}$ (observe the similarity with the Oettli-Prager result).

Acknowledgment. Dr. A. Deif's posing the problem to the author is acknowledged with thanks.

Reference

[1] Nuding, E.; Wilhelm, J.: Ober Gleichungen und Ober Lösungen, ZAMM 52, T188 - T190 (1972).