J. Rohn, Prague

In our papers previously published in Freiburger Intervall-Berichte [1],[2],[3] we showed that each vertex $\mathbf{x}_{\mathbf{y}}$ of the convex hull of the solution set of an interval linear system $\mathbf{A}^{\mathbf{I}}\mathbf{x} = \mathbf{b}^{\mathbf{I}}$ with regular interval matrix $\mathbf{A}^{\mathbf{I}}$ can be described as a unique solution of the system

$$\begin{array}{lll}
\mathbf{A}_{\mathbf{y}\mathbf{z}}^{\mathbf{x}} &= & \mathbf{b}_{\mathbf{y}} \\
\mathbf{T}_{\mathbf{z}}^{\mathbf{x}} & & \mathbf{b}_{\mathbf{y}}
\end{array} \tag{1}$$

(here, y,z & Y = { \tilde{y} ; $|\tilde{y}_j| = 1$ \forall j}, $T_z = \text{diag} \{z_1, \dots, z_n\}$, $A_{yz} = A_c - T_y \Delta T_z$, $b_y = b_c + T_y \delta$, where $A^I = [A_c - \Delta, A_c + \Delta]$, $b^I = [b_c - \delta, b_c + \delta]$) and we proposed the following finite algorithm (called the signaccord one since it works toward reaching $z_j x_j \ge 0$ \forall j) for solving (1) [1, p.6], [2, p.25]:

- O. Select a z & Y.
- 1. Solve $A_{yz}x = b_y$.
- 2. If $T_z x \geqslant 0$, stop with $x_y := x$.
- 3. Otherwise find $k = \min \{j; z_j x_j < 0\}$.
- 4. Set $z_k := -z_k$ and go to step 1.

Later [3, p.41] we recommended to specify step 0 by

$$0^0$$
. Set $z = sgn(A_c^{-1}b_y)$

AMS Subject Classifications: 65G10, 90C33

(where $(\operatorname{sgn} x)_1 = 1$ if $x_1 \geqslant 0$ and $(\operatorname{sgn} x)_1 = -1$ otherwise). The idea behind it was quite simple: replacing the equation $A_{yz}x = b_y$ (with unknown z) by $A_cx' = b_y$, one may expect its solution $x' = A_c^{-1}b_y$ to lie in the same orthant as x_y provided A^I is "narrow". Our recent computational experience confirmed the impact of step 0^0 upon the behavior of the algorithm, resulting in most cases in going through step 1 only once; this, in fact, was the main reason for writing this note. We shall first support our above - stated intuitive reasoning by some theoretical result and then we shall show an example of a worst-case behavior caused by an improper initialization, where the application of step 0^0 leads to a drastic reduction of the number of systems to be solved.

Let $D = |A_c^{-1}|\Delta$. We have this result:

Theorem 1. Let $D[x_y] \le [x_y]$ for some $y \in Y$. Then the sign-accord algorithm with step 0^0 finds x_y in only one iteration.

<u>Proof.</u> Since $|\mathbf{x}_y| > 0$, there exists a unique $\mathbf{z} \in Y$ (namely, $\mathbf{z} = \operatorname{sgn} \mathbf{x}_y$) such that $\mathbf{A}_{y\mathbf{z}}\mathbf{x}_y = \mathbf{b}_y$, $\mathbf{T}_{\mathbf{z}}\mathbf{x}_y > 0$ holds. Denote $\mathbf{x}' = \mathbf{A}_{\mathbf{c}}^{-1} \mathbf{b}_y$. Then from $\mathbf{A}_{\mathbf{c}}\mathbf{x}_y = \mathbf{T}_{y} \Delta \mathbf{T}_{\mathbf{z}}\mathbf{x}_y + \mathbf{b}_y = \mathbf{T}_{y} \Delta |\mathbf{x}_y| + \mathbf{b}_y$, $\mathbf{A}_{\mathbf{c}}\mathbf{x}' = \mathbf{b}_y$ we obtain $\mathbf{A}_{\mathbf{c}}(\mathbf{x}_y - \mathbf{x}') = \mathbf{T}_{y} \Delta |\mathbf{x}_y|$, implying $|\mathbf{x}_y - \mathbf{x}'| \leq \mathbf{D} |\mathbf{x}_y|$. Hence \mathbf{x}_y and \mathbf{x}' lie in the same orthant, so that $\mathbf{z} = \operatorname{sgn} \mathbf{x}'$. Since the sign-accord algorithm starts in step $\mathbf{0}^0$ with $\mathbf{z} = \operatorname{sgn} \mathbf{x}'$, the solution to $\mathbf{A}_{y\mathbf{z}}\mathbf{x} = \mathbf{b}_y$ found in step 1 is identical with \mathbf{x}_y , so that $\mathbf{T}_{\mathbf{z}}\mathbf{x} \geqslant 0$ in step 2 and the algorithm stops.

Since $D \to 0$ as $\Delta \to 0$, the condition $D[x_y] < [x_y]$ is satisfied if $|x_y| > 0$ and A^I is sufficiently narrow.

Now, for each $n \geqslant 2$ consider the interval linear system

$$\mathbf{A}_{\mathbf{n}}^{\mathbf{I}}\mathbf{x} = [-\mathbf{e}, \mathbf{e}] \tag{2}$$

where $e = (1,1,...,1) \in \mathbb{R}^n$ and the $n \times n$ interval matrix $A_n^{\mathbf{I}}$ is defined by

$$(A_n^I)_{i,j} = \begin{cases} 1 & \text{if } i = j \\ [-2,2] & \text{if } j = i+1 \text{ and } 1 \le i \le n-1 \\ 0 & \text{otherwise} \end{cases}$$

(it differs only in the right-hand side term from the example (3.1) studied in [3, p.40]).

1

Theorem 2. Let $n \geqslant 2$. Then, for the interval linear system (2), we have :

- (i) for each $y \in Y$, the sign-accord algorithm, when started from $z=(y_1,y_2,\ldots,y_{n-1},-y_n)$ in step 0, solves 2^n systems to find x_v ,
- (ii) for each y $\pmb{\in}$ Y , the sign-accord algorithm, starting with step 0^{o} , solves only one system to find $x_{_{\bf Y}}$.

<u>Proof.</u> First we find by backward substitutions that for each $y,z \in Y$ the solution of the system $A_{yz}x = b_y$ is given by

$$x_{j} = y_{j} \sum_{m=0}^{n-j} 2^{m} \prod_{i=j+1}^{j+m} y_{i}z_{i}$$
 (j = 1,...,n)

(where we employ the usual convention $\sum_{\beta} = 0, \prod_{\beta} = 1$). Hence

$$\mathbf{z}_{\mathbf{j}}\mathbf{x}_{\mathbf{j}} = \sum_{m=0}^{n-j} 2^{m} \prod_{i=j}^{j+m} \mathbf{y}_{i}\mathbf{z}_{i} \qquad (j = 1, \dots, n)$$

and since the last term prevails, we have

 $\operatorname{sgn}(\mathbf{z}_j\mathbf{x}_j) = \operatorname{sgn}(\overline{\prod_{i=j}^n}\mathbf{y}_i\mathbf{z}_i) = \overline{\prod_{i=j}^n}\mathbf{y}_i\mathbf{z}_i$ for each j=1,...,n. Next we prove that for each $\mathbf{y} \in \mathbf{Y}$, the number $\mathbf{p}_{\mathbf{y}}(\mathbf{z})$ of systems the sign-accord algorithm must solve to find $\mathbf{x}_{\mathbf{y}}$ when started from vector \mathbf{z} in step 0 is given by

$$p_{y}(z) = 1 + \sum_{j=1}^{n} (1 - \prod_{i=j}^{n} y_{i}^{z})^{2^{j-2}}.$$
 (3)

We shall carry out the proof by induction on $p_y(z)$. If $p_y(z) = 1$, then the sign-accord algorithm, after solving $A_{yz} = b_y$, stops with $T_z > 0$. Hence for each j we have $\prod_{i=j}^n y_i z_i = \mathrm{sgn}(z_j x_j) = 1$, so that the right-hand side in (3) is equal to 1. Now assume that (3) holds for each y,z with $p_y(z) < r$ and let y,z be such that $p_y(z) = r+1$. Let z' be the updated value of z after passing for the first time through step 4. Then $z_k' = -z_k$, $z_j' = z_j$ for $j \neq k$, $\prod_{i=j}^n y_i z_i = \mathrm{sgn}(z_j x_j) = 1$ for j < k, $\prod_{i=j}^n y_i z_i = \mathrm{sgn}(z_k x_k) = -1$, hence by the inductive assumption, $p_y(z) = 1 + p_y(z') = 2 + \sum_{j=1}^n (1 - \prod_{i=j}^n y_i z_i') 2^{j-2} = \dots = 1 + \sum_{j=1}^n (1 - \prod_{i=j}^n y_i z_i) 2^{j-2}$ (since $\prod_{j=1}^n y_i z_j' = -\prod_{j=1}^n y_i z_j$ for j < k and $\prod_{j=1}^n y_i z_j' = \prod_{j=1}^n y_i z_j'$ for j > k), which completes the inductive proof of (3).

Now, if $z = (y_1, y_2, \dots, y_{n-1}, -y_n)$, then $\prod_j y_i z_i = -1$ for each j, hence $p_y(z) = 1 + \sum_{j=1}^n 2^{j-1} = 2^n$, which proves (i). Using step 0^o , we have $z = \operatorname{sgn}(A_c^{-1}b_y) = y$ (since $A_c = E$ and $b_y = y$), hence $\prod_j y_i z_i = 1$ for each j, implying $p_y(z) = 1$ in this case, which completes the proof.

Remark. The equation (3) has also another interesting consequences. E.g., for each $y \in Y$ and each k, $1 \le k \le 2^n$, there exists a $z \in Y$ such that $p_y(z) = k$, etc.

References

- [1] <u>J.Rohn</u>, Solving Interval Linear Systems, Freiburger Intervall-Berichte 84/7, 1-14
- [2] <u>J.Rohn</u>, Proofs to Solving Interval Linear Systems", Freiburger Intervall-Berichte 84/7, 17-30
- J.Rohn, Interval Linear Systems, Freiburger Intervall-Berichte 84/7, 33-58

Author's address: J.Rohn, Faculty of Math. and Physics, Charles University, Malostranské nám. 25, 11800 Prague, Czechoslovakia