A NOTE ON SOLVING EQUATIONS OF TYPE $A^{T}x^{T} = b^{T}$

J. Rohn, Prague

Let $A^{I} = [A_{C} - \Delta, A_{C} + \Delta]$ be a regular nxn interval matrix and let $b^{I} = [b, \overline{b}]$ be an interval n-vector. In this note we show that the problem of finding an interval n-vector x^{I} such that $A^{I}x^{I} = b^{I}$ (where the left-hand multiplication is performed in interval arithmetic) can be rather easily solved if we impose an additional restriction on the concept of solution.

Definition. An interval n-vector x is called a strong solution if $A^{I}x^{I} = b^{I}$ and, moreover, if there exist $x_1, x_2 \in x^{\overline{1}}$ such that $A_1 x_1 = \underline{b}$, $A_2 x_2 = \overline{b}$ for some $A_1, A_2 \in A^{\overline{1}}$.

We shall show that the problem of finding a strong solution or verifying that no such solution exists can be solved by the following simple algorithm:

Algorithm.

- 0. Solve the equations $A_{c}x_{1} \Delta |x_{1}| = \underline{b}$, $A_{c}x_{2} + \Delta |x_{2}| = \overline{b}$.
- 1. Construct $\tilde{\mathbf{x}}^{\mathrm{I}} = (\mathbf{x}, \tilde{\mathbf{x}})$, where $\mathbf{x}_{j} = \min\{(\mathbf{x}_{1})_{j}, (\mathbf{x}_{2})_{j}\}$, $\tilde{x}_j = \max\{(x_1)_j, (x_2)_j\}, j = 1,...,n$. 2. If $A^T\tilde{x}^T = b^T$, stop! \tilde{x} is a strong solution.
- 3. Otherwise stop! No strong solution exists. Since A is regular, each of the two equations described in step 0 has a unique solution, as proved in [4]. Since $|x_1| = T_z x_1$ for some diagonal matrix T_z satisfying $|T_z| = E$, we have $(A_c - \Delta T_z)x_1 = b$, where $A_c - \Delta T_z \in A^{\perp}$;

AMS Subject Classification: 65G10

similarly for x_2 . Hence if $A^{\mathbf{I}}\widetilde{\mathbf{x}}^{\mathbf{I}}=b^{\mathbf{I}}$, then $\widetilde{\mathbf{x}}^{\mathbf{I}}$ is a strong solution (since $x_1,x_2\in\widetilde{\mathbf{x}}^{\mathbf{I}}$). To justify step 3, we prove this result:

Theorem. Let A^{I} be regular and let $A^{I}x^{I} = b^{I}$ have a strong solution. Then \tilde{x}^{I} is also a strong solution.

<u>Proof.</u> Let x^{I} be a strong solution. Then $A_{1}x_{1}^{\sharp} = \underline{b}$, $A_{2}x_{2}^{\sharp} = \overline{b}$ for some x_{1}^{\sharp} , $x_{2}^{\sharp} \in x^{I}$, A_{1} , $A_{2} \in A^{I}$. Due to the Oettli-Prager theorem, we have $\left\{Ax_{1}^{\sharp} : A \in A^{I}\right\} = \left[A_{c}x_{1}^{\sharp} - \Delta|x_{1}^{\sharp}|\right]$, $A_{c}x_{1}^{\sharp} + \Delta|x_{1}^{\sharp}|J$; then $A^{I}x^{I} = b^{I}$ implies $A_{c}x_{1}^{\sharp} - \Delta|x_{1}^{\sharp}| = \underline{b}$ and the above-mentioned uniqueness of solution gives $x_{1}^{\sharp} = x_{1}$. In a similar way we obtain $x_{2}^{\sharp} = x_{2}$; hence $x^{I} \subset x^{I}$. Now we have $b^{I} \subset A^{I}x^{I} \subset A^{I}x^{I} = b^{I}$, $\underline{b} = A_{1}x_{1}$, $\overline{b} = A_{2}x_{2}$, hence x^{I} is a strong solution.

We shall briefly sum up some methods for solving the equation $A_c x_1 - \Delta |x_1| = \underline{b}$ (similarly for $A_c x_2 + \Delta |x_2| = \overline{b}$). As described in [3], we have these options:

- (a) to solve the linear complementarity problem $x_1^+ = (A_c \Delta)^{-1} (A_c + \Delta) x_1^- + (A_c \Delta)^{-1} \underline{b} ,$
- (b) to solve the system $(A_c \Delta T_z)x = \underline{b}$ until $T_z x \geqslant 0$; if $T_z x$ is not nonnegative in the current step, we set $z_k := -z_k$, where $k = \min \{ j; z_j x_j < 0 \}$ and return $(T_z$ is a diagonal matrix with diagonal elements z_1, \ldots, z_n ,
- (c) to solve the fixed-point equation $x_1 = A_c^{-1} \Delta |x_1| + A_c^{-1} \underline{b}$ by Banach iterations $(x^{m+1} = A_c^{-1} \Delta |x^m| + A_c^{-1} \Delta |x^m|)$

+
$$A_c^{-1} \underline{b}$$
, $x^0 = A_c^{-1} \underline{b}$); we have $x^m \longrightarrow x_1$ provided $A_c^{-1} \Delta$) < 1 .

Example 1 (Hansen [2]). The system

[2,3]
$$x_1 + [0,1] x_2 = [0, 120]$$

[1,2] $x_1 + [2,3] x_2 = [60, 240]$

has a unique strong solution $\tilde{\mathbf{x}}^{T} = [\mathbf{x}, \tilde{\mathbf{x}}]$, where $\mathbf{x} = (0, 17.1429)^{T}$, $\tilde{\mathbf{x}} = (30, 68.5714)^{T}$.

Example 2 (Barth, Nuding [1]). The system

$$\begin{bmatrix} 2,4 \end{bmatrix} x_1 + \begin{bmatrix} -2,1 \end{bmatrix} x_2 = \begin{bmatrix} -2,2 \end{bmatrix}$$

 $\begin{bmatrix} -1,2 \end{bmatrix} x_1 + \begin{bmatrix} 2,4 \end{bmatrix} x_2 = \begin{bmatrix} -2,2 \end{bmatrix}$

has no strong solution.

References

- [1] W.Barth, E.Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing 12 (1974), 117-125
- [2] <u>E.Hansen</u>, On Linear Algebraic Equations with Interval Coefficients, in: Topics in Interval Analysis (E.Hansen, Ed.), Clarendon Press, Oxford 1969
- [3] J.Rohn, Solving Interval Linear Systems, Freiburger Intervall-Berichte 84/7, 1-14
- [4] J.Rohn, Proofs to "Solving Interval Linear Systems", Freiburger Intervall-Berichte 84/7, 17-30

Author's address: J.Rohn, Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 118 00 Prague, Czechoslovakia