Miscellaneous Results on Linear Interval Systems

by

Jd. Rohn, Prague

This paper consists of results that were not included into
author ‘s previous papers /5/ ~ /8/ for various reasons (other proofs,
obvious consequences, little applicability etc.). An a,ti:enpt to
publish them all together gave birth to this incoherent paper. Nota-
tions used are the same as in /5/ - /8/.

l. On theorems by Oettli, Prager and Gerlach

The following theorem due to Oettli and Prager /4/ describes the
st Xx{x;ax=b,renl,bed’}:

Fheorem 1,1, We have x={x; (Ax ~ v, | £ Alx| +f}.

X= {x; A" -Ix <%, I - AX > Q} ,‘which is the form we shall
prove, If Ax = b for some A€ Al » bE VY, then Ax* - Ix" <
SAx*-x)=b<h, Ixt - A" D> AT -xT) > b Conversely,

let the two inequalities hold; for eaeﬁ i, define fi t B2 !

Progf. Using AO-% (A +X), bc-% (b +B) , we may rewrite

by o
2 (Lyrecesdpy) = % [y + 4y - ag 0] -

S CTEERAYPED W9 )

= _(Bi + n+1‘ki = s:i.)) ’
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then fi(o,...,o) <0, fi(l,...,1)> 0 , hence there is a j such
that fi(l,...,l,o....,o)£ 0 and £,(1,eeey1y}pe0es0) > O . Thus

there i & T€[0,1] such that £,(1,eeey1,T30,002,0) = 0 . Now

for t = (1,..0,1,7,0,...,0) , defining 4;; = 4;, + tj_(IiJ.- gij)

if x;> 0 and Agy =Ky + t5(a;4 - X;y) otherwise, and

by = b, + tn+l.(-t-’-i - B;) , we have (Ax); = b; , hence x€ X .N

We have simultaneously proved this result 3

Theorem 1,2, Let x&€ X . Then Ax = b for some AE AI ’
b& ' such that for each i we have A q€ {_A,ij,l'ij} (1 < j =n),
b, € {Ri'.si} for all but at most one entry.

B and x € R® denote by AIG):: the set

For given A
{Ax;A € AI_} . The Oettli~Prager theorem is equivalent to this result

(in the sense that each of them can be proved from the other)
Theorem 1.3, We have AIO X = [Acx - Alx|, Ax+ A (xu.
Proof. If y = Ax for some A€ A, then |y - Acx[ < Alx| ,

hence y & [Acx - Alx| , ax + 4)x]]. Conversely, if this is true,

then \Acx - y|/<€ 4lx]| , hence Ax = 3 for some A€ il aue to

theorem l.1.H

Theorem 1,1 c¢an be, in turn, proved from theorem 1l.3. In fact,
X = {x ax=b,a€a’ ,vevt) - (g aloxne! £g} -

= {x; Acx-Alxl £%, A x +Alxi }!}- {x; IAcx - bcléAIxI +J} . ‘

Gerlach /2/ was the first to investigate the set

X ={x; Ax £b , A€ AI, b & bI] « His result can be also proved
from theorem 1.3 @
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ZTheoren 1.4 (Gerlach), We have L= {x; Ax - b, <Afx| +J} .
Proof, If Ax <b for some A € AL y DE vl » then, since
Ax € AIOx s we have Ax - Alx| € Ax €b £ b, + d. Conversely, if
Ax - b, <4k| +d , then metting z = sgn x , we obtain A,x<F,
where A“E.AI ,56v .m

Denote X, = {x; Ax2b, A€ AT, bebl}. In a sinilar way
we may prove that XL = {x; Ajx - b, > =al| - d}f.

Theoreg 1,5. We have I=X4NZX,.

Progf, Obviously, X = {x; (Agx = b (< Alx] + Jf =
= {= a5z - v <ol v I]n{x agx = B> -aix) - SF - N5, .

This result is not quite trivial sinece it shows that if
LT £b) , Ayx> b, for some Aj,4,€ AT, b,b, € bT , then also
13: = b3 for some A3€LI ’ b3€ bI .

When dealing with interval linear systems, one could be tempted
to introduce solutions satisfying AX® x = bl ., Theorea 1.3 shows
that then A x -Alx| = b, Ax +4x|=§ , implying x = A7 4 ana
Alag'n, | = & . Hence unless the last condition is met , & solution
to AIOx = bI does not exist .

2. Bstimation of the interval solution

In this section we give a (practically bhardly applicable) method
for comstructing an estimation of the exact interval solution [x,X]
of an interval linear system AIx = bt « A8 before, we use the notation
-1 =1
D = A7 1-,4, d = A7 b’ _(yer) .

v y
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Theorem 2.1. Let Al ve regular and let for each y € Y, a,

be a solution to the system of linear inequalities
(B - Dy)a>a,

(B + D )q -dy (2.1)

y/a2
>

q (o]

(whose solution set is nonempty). Then, we have

H yé!}

(2.2)
qy-l-d'yéY}. ‘

Proof, Pirst observe that (2.1) can be equivalently rewritten as

- &Dq + 4, <q

y (2.3)
q=>0. ”

Since Al is regular, the equation x = Dylxl + dy has a solution

xy (/5/). Hence q = |xy| satisfies lqu + dy[ = q , 80 that it
solves both (2.3) and (2.1); hence the solution set of (2.1) is non-
empty. Let ay be an arbitrary solution to (2.1) (y€ Y) . Define

AN S QO A A A Haypy) o shen lpy{ <y s

1

2
hencel y>20 ’ xy;0 » and from x{- X \ 'quy"'dy'
= Dy(xy + xy) + dy it follows Aye:y - :yfxy - by + Hence from theo-
rem O in /5/ we obkain X C Conv {xy ~x 57 € Y} = Conv{quy-i-dy:yG Y}

which justifies the estimations (2.2).®
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3. Other proofs I : P-property

In /6/ we proved and in /8/ reproved the following theorem. In
view of its importance for deriving other results, we give here a

still another proof.

Theorem 3,1, Let AI be regular. Then for each Lysa € AI ’
voth A)A7' ana a7la, are Pematrices.

. Proof, We shall prove only the first part e¢f the assertion since
the second follows from the first one applied to the transpose (AI)"l|
Thus assume $hat A)A;" is not & P-uatrix for some A,k € o' . Thea
according to Gale and Nikaido /1/ there exists x ¥ 0 such that
xi(AlL2 x); €0 for each i . Define A = A+ Tt(Az-Al) s where
ti =1 if x; =0 and tl is (any) root of the real funotion

£3(8) = x (g rt(aymay))y, A70x
in [0,1] if X3 A0 (such a root exists because fi(o) = x.,l(itlt2 x)i
fi(l) - xi 0) « Fow we have AEAL gana uzlx = 0 , contradicting
regularity. m

4. Other proofs II : a "achrankentreu" result

The “"schrankentreu” (after Nuding /3/) result quoted below was proved

. in /1/ with the help of some properties of nonnegatively invertible
matrices. The proof given here is more elementary.
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Theorem 4.1, Let Al
=1

Tl b>0. Then for the exmct interval solution [x,X] of Alxebl
webhave x =1 b, x=4"15.

be nonnegatively invertible and let

Proof, Let Ax=b for some AE AL , b€ bl ., Then in view of
the nomnegative invertibility we have x = A~1b> A~lp = IT~1p +
+272@-a) T > Ty, 0 that x =T'y . Purther, since x2 0,
we get Ax <Ax €T, implying x <A T =X .m .

5. Other proofs III : Parkas-type theorsm

The classical Farkas theorem states that Ax = b has a nonnegative
solution iff for each y , ATy > O implies bYy > 0 . In /7/ we
showed that this result can be extended to interval linear systems
(with A of arbitrary sise m xn) in this way 13

Theorem 5.1, A'x = B! has a nonnegative solution if and only if
(Vy)(A%;O for each A€ AT => bYy 20 for some b €& bY) (5.1)

holds.
We give here a direct proof of this theorem.
Broof, "Only if® :If A X =D, , x>0, € 4%, p & vl ,
then if ATy > 0 for each A€ Al , then also A3y > 0, hence
bly > 0 according to the Parkas theorem. "If* : Assume that (5.1) ®
holds. To conclude the proof, it suffices in view of corollar& 1,2
in /7/ to show that Ax< T, -Ax < -b has s nonnegative solution,
which, due to Parkas theorem, is reduced to the proof of the implication




- 35 = Rohn

_A_Tpl - ﬂng 0= Smpz - Qsz >0 for each py,p, > O o Thus let
Arpl - I!pz 2 0 for some py,;py> O « Then for each aseal we have
Ar(pl-p2)> A'py - I&ng 0 , hence (5.1) assures the existence of a
b, € b1 such tnat hf(pl-pz) >0. Bt B -1 > bl(pl-pz)

and we are done. m

6. Determinants and singularity

In this section, we first derive some determinant theorem and
then we apply it to singular interval matrices to show that such a
matrix always contains a real singular matrix in some "normal form".

Let Al = [4,I] be a square interval matrixz. Por each A€ Al
denote by h(L) the mumber of pairs (i,j) for which AJ..') ' (A“, ij)
(so that for the pairs not counted we have either Ayy = 4;y or
Ayy = ”). We have this result.

Iheoren 6,1, Let Al bvea square interval matrix, Then for each
A€ 4l there exists an 4°€ AT such thet n(A*) €1 ana
det A’ = det A .

Proof:, Givenan A€ AT, let 1 =-1n{n(n), BE al
det Bamdet A}, then h = h(A") for some A ‘e al , det A" =deta.
Assune for contrary that h(‘. ¥> 2, 80 that there are (p,q) . (r,s) .
(pra) ¥ (r,s) such that I.Pqe (.pq,apq) A a" & ‘(5”,1:“) . Then
we can choose %) , V such that the matrix A‘° formed from A° by
replacing L a;s by a;q +M , al +V , respectively will
satisfy det A" = det A", 4°’c Al and either
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g * oze{g_pq, apq} yor al +VE {grs,a.rs} « Then det A" = det A
and h(A’") < h , which is a contradiction. m

The next theorem shows that a singular interval matrix contains
a singular (real) matrix of a simple form, We shall give two proofs
to this result.

Theorem 6,2, I1f A' is a singular interval matrix, then there

exists a singular matrix A€ A with h(A)< 1. .

Proof I, If Al is singular, then it contains a singular matrix
Ao ; hence theorem 6.1 assures the existence of a matrix A& AI such
that det A = det A =0 and h(A)<1.m

Proof 11, If A! ie singular, then there exists s singular matrix
Ay, such that z2€ Y, |t|< e and [t;] =1 for all but at most
one i (/8/ , theorem 4.1, (x)). If |t| = e , then h(a,,) =0
and we are done. Thus assume fhat ltrl < 1 for some (unique) r and
define matrices Aj (j = Oyeeeyn) a8 follows: if i ¥r , put
(Aj)ik - (A.“)ik for each k ; for i = r define (Aj)rk =4, for
k<j ana (Aj)rkJrk for k> j . Since det A, is linear in t.,
we must have det Ajdet A < O . Then there exists a j , J& { 0,...,n-1j,
such that det Aj det Aj-o-l <0, for det 4 det Ai+1> 0 for each
i€ { 0yeeuyn=1} would imply det A det A > O . Since Ay and Ay,
differ only in the (r,j+l)-th coefficient, assigning it a proper value .
from fgr’j+1,3r'j+ij will yield & singular matrix A with h(A)< 1 .g

The second proof is constructive. A singular matrix of the form

A, (or Azt »in which case we argue similarly) can be constructed by
algorithm 5.2 in /8/. i
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7. Transformation of the inverse

1

Assume we know the inverse A™~ +t0 a square matrix A and we

would like to compute (A + Dj)'l s where DJ is a square matrix
whose all rows are zero except the j=th one which is equal to dT
(we Dbave encountered such a situation several times in our previously
published algorithms). We shall show here that this hy be done by
. only one Gausgsian pivoting using the following procedure (eJ is the

J=th coordinate vector):

1. Compute a = a4~ & e§ . If a5 =0, stop!
A+ D;j is singular.

a
2. Form an (n+l)x n tableau —=—y—
A

3. Perform a Gaussian elimination on columns of the tableau with

pivot aj so that a beconme ‘§ .

4. Then the square lower part of the tableau is equal to
@+,
To justify the last assertion, we observe that the k-th column of the
square lower part is for k ¥ j equal to

-1 . -1 -1 1 = -1
o (@™ a W@ - pah)
and for k = j to
b 1
-1 _ (s=1 -1 -1
a5 =@ S ATD 7Y 5,
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where a = dT(A'l).j +1= (DjA-l)jJ-
part of the tableau is equal to (AvD:j )"l Que to the lemma in /5/.

If 8 = 0, then det(A + Dj) = det(E + DJA-l)det A= &y det A = 0,

Now assume we know the solution to a system Ax = b and we are

+ 1 . Hence the square lower

looking for the solution x° to (A+Dj)x' =b+ Cey (emgea in j=th
row only!). Using the above expression for FA + IJJ.)°:L » We arrive at

the formula x° = x + % .(A-l)-i . Hence x° may be found by the.
same procedure as above when working with an (n+l)x(n+l) tableau with
a; (i < n) as before, 841 = de -& a.nd'with fhe lower part

of the form A"ll x .

8. Descent method for computing x,

Employing the idea developed in /8/, section 5 we may construct
a descent algoritha for computing Xy a8 shown below, it works only

1

Algorithy 8,1, (computing X3 for a given i ),
0. Select A€ AT, beb! oo that la-a | =4 , le-b,| = § .

under some restrictions (modifications for X. are obvious)

l. Solve Ax =D .
-1 .
2. Ir AiJ(A-Ac)J.kxk; O for each j,k and -
~i i

3. Otherwise find the minimum j for which either

=1 -1

A5§(bg=b) 5 < O or Ayy(a=a,) % <O for some k.

A -1

4, For this j set b:j===>(]2-bc--b)‘,j if Aij‘bc'b)j <0 and

Ajk:-(ZAc-A)Jk if Aij(A-Ac)J-kxk <0 .
5. Go to atep 1 .

A;:;(bc-b)JQ.-o for each j , set Xx. = x. and stop. .
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Since in step 4 changes are made only in one row j , solving
the new system when returning from step 5 to 1 may be performed by the
method of section 7. The algorithm is finite since each A, b gsatisfy
[a = Al =4, 10~ b,| = J' and x; strictly decreases at each step.

Theorem 8,1, Let Al be inverse-stable and let the solution

set X 1lie in the interior of a single orthant . Then Xy =Xy .

Eroof, After a finite number of steps the algorithm stops with
-1 =1 T -1
A -k x> 0 Y ik, 475(bg=b); > 0 Vi.Set y° =-sen(a”l), |
£ = 8sgn x , then due to the assumptiona we have vy (A=A <0
Y ik, ¥4(b,~b); <0 ¥j , hence 4 =4

c)jk‘k
e b= by « Thus x satiasfies

vz
wl .

Ay.x = hy » T,x2 0 and (‘yz)ij’j £0 V j, hence the assumptions
of theorem 2.2 in /8/ (for probleam min ... instead of max ...) ars met,

s0 that x is optimal and L =X =X . m

The assumptions of theorem 8.1 can be replaced by more verifiable

assumptions

c [agt] < [a7Y

(-M)(|xe| +d)) < 2|x,)

where C = D(2-D)™' , x = A7Mb, , d) = ATY§ ana D (474 is
supposed to satisfy (D) <1 (mee /5/, /8/ ). Hence the algorithm
works if lA;1|>0 v 1x) > 0 and AT, o are sufficiently narrow.
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9. An interval linear programming algorithm

An interval linear programming problem (AI of size nxm)

I

max{ch; Ax = b, A€AI, bE b, x2 0}

is, as well~known /7/, equivalent to a LP problem

max {ch; Ax £, ~Ax £-b, x> 0} {9.1)

which may be solved directly by the simplex method. However, the number
of rows is doubled in (9.1) and therefore an algorithm working with
an original size tableau, presented below, may be of some interest.

The idea behind the algorithm consists in solving problems of

the form

max {ch; Ay X =DByy x 2> O} (9.2)

(y € Y) and is supported by the following criterion :

Theorem 9.1, Let x* be an optimal solution of (9.2) and let

(9.2) have a dual optimal solution p satisfying Typ 2 0 . Then
x™®  is an optimal solution of (9.1),

Broof, We shall show that x™ and p*, p~ satisfy the comple-

mentary slackness conditions for (9.1) and its dual problem

=T T T =T ) . -
bpl-bpz;épl-Apzéc.pl.paaoj-Smce ATP’-ITP =.
= A?ep > ¢, we have that p', p~ is feasible for the dual problen,

Next, if x;> O, then (ATp" -ITp-)i = 043 if p';) 0 , then vy = 1,

hence (4x) j= Bj y similarly for p; > 0 . Hence the complementary

min {

slackness conditions are met. g
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Hence if yjp:i £ 0 for some j , we set yj:= ¥ and return

to solving a new problem (9.2). It is however more preferrable not to
solve each problem till its end, but to change the system (9.2) as

soon as

the condition T yp; 0 is violated. In view of the fact that

each change affects one row only, we may use the procedure of section 7

to perform the computations in a tableau of the form

a
~1 ~1
Als Ajp Ay, x (9.3)
P c* h

0.

1.
2‘

3.
4.
5.

1

where a is an additional pivoting row (sees below) and the rest is
a usual simplex tableau for (9.2) (where AyB is the current basis
matrix for (9.2) with basis B).

ri 1l (solv 1

Select an y € Y and apply phase I of the simplex method

to obtain a feasible solution. Form (9.3), as= O.

Iir T,pgo,gotosteps. .

Otherwise melect a j with ’jpj & 0 and set

a::aglo-zy:’ (¢ AB)J"(A;%,A;% Ay.,x) + l(OT, =4, CYJ)J ’

Tyt =¥y

If a;% 0, stop! (9.1) is unbounded,

Perform Gaussian elimination with pivot n.j and pivot row a .
Go to step 1.
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6., If c¢* > 0, stop! Optimal solution.
7. Otherwise find minimum j with c‘J’f< 0 and perform a usual
simplex step to introduce the respective column into basis.

8. Go to step 1.

Theorem 9.2. Assume that each nonnegative solution x of Ax=b
(A AI, be bI) is nondegenerate (i.e. has at least n positive
entries) and that >0 . Then algorithm 9.1 gives in a finite
number of steps an optimal solution to (9.1).

Proof, In the light of section 7 we can check that the transforma-
tion described in step 2 updates the tableau (9.3) to the form correspon-
ding to the change of Y; to ~¥j e Denoting the new value of x by
x’ » we have

e . o 204x+d);

epXx = CpX = 5, yjpj ’
hence the objective increases at each step, implying finiteness. Non-
degeneracy assures x > 0 at each step; if aj <0 , the objective
is unbounded. When stopping ocours in step 6, the current optimal

solution of (9.2) satisfies Typ 2 0, thus it is an optimal solution
to (9.1) due to theorem 9.1. M

This algorithm and convergence theorem were mentioned in /7/,
p. 52,




- 43 - Rohn

References
e ———t——

/1/ D.Gale, H.Nikaido, The Jacobien Matrix and Global Univalence of
Mappings, Math. Annalen 159 (1965), 81-93

/2/ W.Gerlach, Zur LBsung linearer Ungleichungssysteme bei St¥rung der
rechten Seite und der Koeffizientenmatrix, Math. Operationsforsch.
Stat., Ser. Optimization, 12 (1981), 41-43.

/3/ B.Muding, Schrankentreue Algorithmen, Freiburger Intervall-Berichte
81/3, 49-79

/4/ W.0ettli, W.Prager, Compatibility of Approximate Solution of Linear
Equations with Given Error Bounds for Coefficients and Right-Hand
Sides, Numer.Math., 6 (1964), 405=-409

/5/ .o, Solving Interval Linear Systems, Preiburgsr Intervall-Be-
richte 84/7, 1-14

/6/ J.Rolm, Proofs to "Solving Interval Linear Systems", Freiburger
Intervall-Berichte 84/7, 17-30

Va/l J.Rohn, Interval Linear Systems, Preiburger Intervall-Berichte
84/7, 33-58

/8/ J.Rohn, Some Resulte on Interval Linear Systems,
Preiburger Intervall-Berichte 85/4, 93-116

Author ‘s address: J. Rokn, Paculty of Math. and Physics,
Charles University, Malostranské ném. 25
118 00 Prague
Czechoslovakia



