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0. Introduction and notations

This paper brings miscellaneous results concerning interval linear
systems, grouped into relatively independent sections and covering
such areas as properties of the solution set, computational aspects,
reqgularity, nonnegative invertibility and interval linear programming.
The reader is strongly recommended to read first our paper [22]
to which references are frequently made in the text.

Notations used are almost the same as in [22]. We repeat them

I

briefly. We deal here with interval linear systems A"x = bI, where

ale [Ac -A A+ AJ=[§,EJ is an nxn interval matrix, bl =

n

Lbc - J‘ ’bc + cr_] =f_12,BJ is an interval n-vector, n 21l. We denote
T - - - .

N = {1,...,n}, e = (1,...,1) , £5 -, ¥ = {yeRn;lyl—e}; T, is

the diagonal matrix with diagonal t €R™. For each t,zeRn, we define

A, = A, - T,AT,, by = b, + T d(l.e. (B,);y = (Bo)iy -t 84475

(bt)i = (bc)i + ti&i’ i,jéN); if it €e and |z| £e (especially if

t&€Y and zeY), then AtzeAI, btébI. For each xeRn, we define

sgn x€Y by (sgn x); = 1 if x;20 and (sgn x); = -1 if x; L O.

XEM is called an extremal point of a convex set M if there does not

. . 1
exist a pair x,,x,€M such that xl7ﬁx2 and x = §(x1+x2) . SJ(A)de

notes the spectral radius of A.

AMS Subject Classifications: 65G10, 90CO5, 90C33
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1, The solution set

In this section, we present some properties of the solution set
X = {x; Ax = b, AGAI, b&bl}. some of them are known; we give new
proofs here, sometimes shorter.

The basic description of the solution set X is due to Oettli

and Prager [16] :
Theorem 1.1. X -‘-{x; [Acx-bcf £ Alx| +cf}. ‘

Proof. If Ax = b for some AGAI, bébI, then lAcx - bc]=

o2

:I(Ac - A)x + b - < Alx' +J\. Conversely, let the inequality hold;

el
define t&R" by

(Acx - bc)i/(dlxl + d‘)l if (Alxh'd.)i 7-‘:0

t =
1 otherwise
(ieN), then Ax -b, = Tt(A\xl +d ) and with z = sgn x we obtain

Atzx = bt’ which, since t €[f,e], implies X€X. R
We have simultaneously proved this

Corollary 1.1. Let x €X. Then it satisfies Atzx = bt for

z = sgn x and some te[f,e].
The following two results are due to Beeck [4] :
Corollary 1.2. X = {x; A X &b, A x 2 b, T,x 20, zéY}.

Proof. Follows immediately from theorem 1.1 when expressing

ix| by sz with z = sgn x. [

Corollary 1.3. The intersection of X with each orthant is a

convex polytope.

Proof. From corollary 1.2, with z fixed.m
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A still another description of X can be obtained from theorem 1.1

. . + - +
when substituting x = x - x , x| = x + x :

Corollary 1.4, X = {x; §x+-.7§x— < b, Kx+-§x_> p_} .
The central result concerning the solution set is theorem 2 ir
[22]. We give here another proof, not using theorem O, and perhaps

more insightful. We begin with this theorem:

Theorem 1.2. Let al be regular. Then each extremal point x of

Conv X satisfies IAcx - bcl = alxl +d .

Proof. x, being an extremal point of Conv X, must lie in X.
Hence Atzx = bt for z = sgn x and tG[f,eJ (cbrollary 1.1).
Assume for contrary that tjé (—1,1) for some j. Then there exists a
sufficiently small & >0 such that for each t = t + @”ej, Je ("6,&))
the solution x “of A, —zx' = b - is, according to lemma 1l in [22] ,
given by x~ = x - P(a”)}\;;ej, where
LAzl + J)J
1- T(ATZAE;)jj

Hence x is an interior point of a segment lying in X, so that it

)=

cannot be an extremal point of Conv X. Thus [t| = e; since A x = b

implies A x - b_ = Tt(A|x|+J), we obtain |Acx -b | = alxl +J-l

o

As in [22] ,We can bring the equation [Acx - bcl = A lxl + J‘

by substituting y = sgn(Acx - bc), x=xt - x7, x| = x" +x
to the form
+ -
B,oXx = Ajex = by (1.1)

(yGY).

Theorem 1.3. Let AI be regular. Then for each y&Y, the equation
(1.1) has exactly one solution xyex and we have Conv X =

= Conv {_xy; er}. .
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Proof. As in [22) ,the existence and unicity of the xy’s follows
from the P-property of matrices A;(]_;Ayf (yé Y) . According to
theorem 1.2, Conv X = Conv {x; lAcx = bcl = Alx| + cf} =

= Conv{xy; yéY} .B

A system AIx = bI is called normal if A|x| + J > 0 for each
X €X. It can be easily shown that a system is normal if either of
the following two conditions holds: (i) d >0, (ii) A >0 and 0 ¢ bl. .

Theorem 1.4. Let AIx = bl be a normal system with a regular

matrixz AI. Then the mapping x-~»t given by
(ax - bc)i

ty = Calal +J)i (ien) .2)

is a continuous one~to-one mapping of X onto the interval [f,e] .

Proof. It follows from theorem 1.1 that X is mapped into [f,e] .
Let t €[f,e] ;then, according to theorem A in [23)] , the linear

complementarity problem

+ _ -1 = -1

x" = A_A x + A b, (1.3)
has exactly one solution x. (1.3) can be rearranged to
Acx - bc = Tt (Alx] +dj, which shows that (1.2)holds, hence t

is the image of x, and x is unique. g

The inverse mapping t-»x cannot be expressed explicitly, but '
for each t the inverse image x may be computed by solving (1.3)
using Murty s algorithm [13] . Notice that each y€Y is mapped exactly

= A;Ibc. For each z€Y, the set

on the point Xy' 0O is mapped on X,

{t; té[f,e], th> 0} is mapped onto the intersection of X with
the cone emanating from X and spanned over the vectors zj(Agl)

(j&N).

.3
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Corollary 1.5. Let AIx = bI be a normal system with a regular
matrix AT. Then for each y.y' €Y, y#y~ implies x, P Xy -

Proof. From theorem 1.4.8

2. Nonconvexity of the solution set

It follows from corollary 1.3 that the solution set X, being a union
of 2% convex polytopes, is generally nonconvex. In this section we

shall examine the problem of (non)convexity in terms of the x, “s.

Theorem 2.1. Let AI be regular. Then X is nonconvex if and only if
there exist y,y €Y and i,j&N such that yiyi' =1, Aij> 0 and
(xy)j(xy—)j < o.

" : = )\ - )
Proof. "If": Let x X, + Cny for some A 20, CK>0,

A +C1 = 1. Then lej < 7\|xy|j +<n lxy—lj, hence lAcx - bcli'z
=ly; (& ()”Xy’ u (“'lxy’l) + Cf)ll > (&l + J‘)i' showing that xX
(theorem 1.1). Thus no interior point of the segment connecting xy
with xy- belongs to X, so X is nonconvex. "Only if": Assume for
contrary that for each y,y € Y and i,j€&N, yiy:[ = 1 and Aij > 0
imply (xy)j (xy—)j > 0. Let x = %Ayxy' )xy;o for each YEY,
ZY p,) v = 1 . Then for each i€ N we have((Acx = bc)i =
i n(Fa )+ 8 0= TAL(Z 0, | [ Ak L)

g:hy iV Tijty’d i 3 13 yy=1 vy 15 y;=-1 ¥y 13

- < =

%:Ayyi(ri , hence IACx bcli" ZinjI‘?Y-‘-)‘yxijrcri
= (Alxl + d\)i' so that x€X. Thus we have shown that Conv {xy; vE Y}C
< X, which in view of theorem 1.3 means that Conv X = X, and X

is convex. B
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Together with this result, we have proved

Corollary 2.1. Let AI be regular. Then, X is nonconvex if and

only if there exist x 0 xy 56 xy— , such that no interior point

y'*y”
of the segment connecting xy with xy— belongs to X.
Theorem 2.2. Let AI be regular and let A O. Then X is non-
convex if and only if there exist y,y €Y, y%-y', such that
x J.(x -). o) j €N.
(Y)J(y)3< for some jé& .
The proof follows immediately from theorem 2.1. The reason for

the assumption y# -y~ is explained in the next theorem:

Theorem 2.3. Let AI be regular. Then for each y €Y, the whole

segment connecting Xy with X_y lies in X.

Proof. Take x = >\xy +C\-x_y , A>o, <K>O, A +<“-= 1.
Then from Acxy - b, = Ty (a [xy| +d"), Acx-y - b, = —Ty(A‘x_y[ + (f)
we get A _x - bcl=|Ty(A(l7\xyl - I(\ﬂ-«x_yl) + (- (k)é‘)l <
£ 2lx| +(5‘ , hence x€X. g

The solution set can be convex even if it intersects the interiors

of all orthants:

Example 2.1. The solution set of the system
(1,20x, + (1,20%, = [-1,1]
[1,20x, +0-2,-1dx,= [-1,1d ‘

is a square with vertices (l,O)T, (o,1)7T, ('IIO)T, 0,-1)7.

The following theorem will be used in interval linear programming
(section 10):

Theorem 2.4. Let AIx = bI be a normal system with a regular

matrix AI such that xy > 0 for each YEY. Then X is a convex poly-
hedron with vertices xy (y& Y) and two vertices xy,xyf are neigh-

bouring if and only if y and y~ differ in just one entry.
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Proof. It follows from theorem 1.3 and corollary 1.2 that
X = { x; Ax £ b, Ax 2 b, x 2 O}. Each extremal point (vertex)
of X is equal to some Xy according to theorem 1.2. The fact that
each XY is an extremal point of X follows from theorem 2 in [ZOJ 5
If xy and xy— are neighbouring, then the edge connecting them must
lie in the intersection of n-1 hyperplanes. Since the normality
precludes the possibility of (éx)i = Bi,(‘ﬁx)i = b, holding
simultaneously for some i, there must exist a YE€Y and a kEN such
that each point of the edge satisfies the system

(A?ex)i = (vg);. ien-{k . , (2.1)

Hence xy and xy, also satisfy (2.1, so that y and y~ differ only

in the k-th entry. @

3. Computational complexity of the sign accord algorithm

In [22), we proposed using Murty s algorithm [13] for solving the
linear complementarity problem ' = A;éAyfx— + A;éby. This requires
inverting Aye and then working with a simplex-like tableau. We also
showed in [22] that Murty s algorithm can be reformulated in terms

of solving systems Ayzx = by until sz ;;O (the sign accord algorithm).
This approach does not require computing the inverse matrix, but

still the original Murty s form is to be recommended in the general
case. Clearly, the sign accord algorithm cannot take more than 20

steps; following Murty s example {141 ,we shall show here that this
upper estimate can be achieved. For each n 2 1 define an interval

matrix Ai by
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1 if i = 3§
I = . . . .
(An)ij = [-2,2] if j= i+l and 1 £ i € n-1
O otherwise.
Now consider the system

alx =(f,£] . .1)

Theorem 3.1. For each n > 1, the sign accord algorithm takes
exactly 20 steps to compute X, for the system (3.1J)when started ‘

from z = e.

Proof. For the solution of the system Aezx = f we have
n-j .
i .
~1 - 272, a2 1 £ < n-1)
— 341 j+i ( J

X
"

Hence, if the sign of z, is reversed (k}- 2) , then iy roeerX

k
remain unchanged and KyreeorXy g take on values of opposite signs

n

(since the last term 2" J creZy prevails). Thus the sequence

2441
of vectors sgn (sz) looks 1like this:
L H T S S e
1,-1,-1,...,-1
I Rl
1ot e L S e Hi

=1,-1, 1,¢e.,-1

If we write O"s instead of -17s, then, when read from right to left,
these sequences will be just the binary numbers O,l,...,Zn-l.
Thus the algorithm takes exactly 2" steps before stopping with

sgn (sz )=e L
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In [23] we showed that the sign accord algorithm can be
started from an arbitrary z€Y without affecting its convergence.
It is a good reason to believe that z = sgn dy (dy:= A;lby)
is a good choice. In fact, in ([ZIJ,p. 27) it was proved that
if C|dy| < hEA Gue. if AI is “narrowﬁ) , then sgn xy = sgn dy’
so that in this case the sign accord algorithm takes only one step.
Nevertheless, in our above example we have z = sgn de:‘ £,
sgn (sz)=(Gl)n_l,...,1,—1,1)T, so that the algorithm takes more
than 2772 steps.

In our paper [21] we described an iterative method for computing
xy. This method can be recommended for large-size examples with small
values of ?(D) (D:=(A;1|A) ; small-size examples can be usually
solved more quickly by finite algorithms. However, for the above

(o] 1

example (where S’(D) = O) we have X, = £, X = X, -

4. A linear programming method for computing x

Y

In this section we are going to show that the equation
+ -
Ayex = Ayfx = by

can be solved as a linear programming problem
n T
mln{c (%% % Ay Xy =Ay Xy = by, x; 2 O, X, 2 O} G:.1)
if ¢ is chosen so that the condition
cTA“lrry > oF for each aeal (a.2)
be satisfied. This approach is similar to that of Mangasarian [1U,

but the proof is different.
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Theorem 4.1. Let AI be regular and let (4.2) hold. Then

the problem (4.1) has a finite optimum and for each optimal

solution x‘f, x’; of (4.1) we have Xy = xi“ - xg.
Proof. Consider the primal problem
min{ - xz) (Ax; - Bxy), 2 b, (yi= 1)
(-Ax + sz)la b, (v;= -1)

X

It can be easily verified that the dual problem reads

max {b T p, AyeTyp <c, Ayf yp 2C P2 }
If p satisfies the dual constraints, then (ACTyp -c| £ A |T Pl
hence theorem 1.1 gives that ATTyp = c for some AEA ;, so that

pl = cTA_lTy > oT due to (4.2). Thus both the primal and dual

problem are feasible, hence the duality theorem assures the existence

of an optimal solution xf’, xz* to (4.1) , which, since the dual
* _ . _
yexl Ayfx2 = b
* * .
Assume that X1 > 0, X33 > 0 for some j with A j# 0 (‘the j-th

optimal solution p* is positive, must satisfy A

column of 4) . Then the complementary slackness conditions give
T _# ;

A . =(A = c. implyin .p =0, a contradiction.

(yey )J (yfy j trelying A 4P ’

Hence x = 0 for each j with A j# 0, thus Aye(x? - X;)+ -

13%23
_ yf(x'iL = xg)_ = by, which gives Xy, = x’f - x‘z' ..
Baumann [2) arrived at the same condition (4.2) in another ‘
context and described a 3x3 example such that for y = e, (4.2)
does not hold for any c €R"™. Thus the method described is seemingly

not general, but shows an interesting connection with linear

programming.

12 >0}. ‘

-




. - 43 - Rohn

5. An estimating algorithm

If n is large, then the computation of the exact interval solution

x! = [ x,x] may be too costly; in such cases, an estimate of xT
could suffice ( cf. Neumaier [151).
. . . q I Iy-1
‘ An algorithm for simultaneous estimating x~ and (A) can

be derived from lemma 1 in [22] . The algorithm, starting with
Acx = bI, goes along all the pairs (1,j)€Jhdiand at each step records
the effect of Aij being "made free". In its most elaborate form,
paying attention to the estimates to grow as slowly as possible,
it seems to give good results.

B We leave it on an interested reader to derive and test that

algorithm himself (herself) .

6. Regularity and P-matrices

In [23] , we proved this "theorem A": If al is reqgular, then for

. each A, ,A, € a®, both AIlA2 and AlAgl are P-matrices. In this

section, we give some consequences of this result.

Theorem 6.1. Let AI be regular. Then for each Al,AzeAI we have:
(i) there exist x1> 0, x, > 0 such that Ax) = AyX,,
-1. _ -1
1 X1 = By Xy
(1i1) if A x; = A,x, for some x; ¥ O, x, # O, then x,;x,; > O

. (ii) there exist x,> O, x, > O such that A
1 2

for some i€ N,

. . -1 1
(iv) if AJTE) S Ay, for some x1+ o, xzf O, then xliX2i> o]

for some i€EN.
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Proof. The proof follows from the above-quoted theorem A and
from the results by Gale and Nikaido [8] : if A is a P-matrix, then
(a) there is an x > 0 with ax > 0, (b) if x $ 0, then x,(ax), > ©

for some i. B

For any z €Y, let us call the orthants {x; sz; O} .

{x; sz_{ 0} opposite. Notice that b is fixed in the next assertion.

Corollary 6.1. Let AT pe regular and let b# 0. Then the ‘
solution set of the system AIx = b cannot intersect two opposite

orthants simultaneously.
Proof. Follows from the assertion (iii) of theorem 6.1.8

Theorem 6.2. Let AI be regular, Al,AzeAI. Then each real eigen-

value of AIl(Al - Az) is less than 1.

Proof. Assume there is a real eigenvalue t with t 2 1. Then from
-1 — -1
Ay (Al - Az)x = tx, x 7 0, we have (Al + t (A2 - Al))x = 0, hence

the matrix A + t-l(A2 - Al)EAI is singular, a contradiction. B

Let us denote by POCA) the maximum of real eigenvalue moduli

of A. If no real eigenvalue exists, we put fo(A) = 0.

Corollary 6.2. Let al be regular. Then ﬁ,(A‘:lA o) <1 for
each 4  with JA_|<£4 - .

Proof. Follows from theorem 6.2 applied to (a) A= AL,

A,=a_ - A, () A=A A

o 2=AC+AO..

Next we prove a regularity criterion (seemingly not of practical
— -1
value) . Let Dyy = B; T,4T, for y,z€&Y.

Theorem 6.3. AI is regular if and only if ?o(Dyz) <1 for

each v,z &Y.
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Proof. The "only if" part follows from corcllary 6.2. The

proof of the "if" part is the same as in [3] .®m

Theorem 6.4. Let AI be regular. Then for each Ao with

—1 .
la ] £ 4 we have IAc Aolii <1 for each i€N.

Proof. Put A = A - AOGAI. Since all diagonal entries of the
P-matrix AglA are positive and A;IA o = E - A;lA, we have
(A;lA o)ii ¢ 1 for each i€N. To complete the proof, it suffices

to apply the result just obtained to —Ao. [ ]

Next we give two sufficientlingularity conditions. Let D =
= a-1
A, A .
Corollary 6.3. Let IDOIii 2 1 for some i€N. Then al is

singular.

Proof. Follows from theorem 6.4 for A o =4.m

Corollary 6.4. Let some of the matrices éK—l, XA_I, é—lX, X_lé

have a nonpositive diagonal element. Then AI is singular.

Proof. If AI were regular, then each of the four matrices

would have positive diagonal in view of theorem A.H

In [23] , we proved this characterization (Ay = A;éAyf ):

Theorem 6._5_;>AI is regular if and only if Ay is a P-matrix

for each y&€Y.

The "only if" part follows from theorem A. To prove the "if"
part, we need not use theorem O of 23] , but instead we may apply
the following theorem 6.6; notice that theorems 6 and 8 in 2217

can be also proved as its direct consequences:
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Theorem 6.6. The following assertions are mutually equivalent:

(i) A regular,

(ii) Ayex'*' - Ayfx = ey has a solution for each yE€Y,j€EN,
(iii) Ayex1 S Ayfx2 = ej has a nonnegative solution for each
YyEY, j&N.

Proof. (i) =»@i): from theorem 1.3. (i) =) (iii): obvious.
(iii) = (i): assume that AT is singular, then ATp = 0 for some
AGAIKP # 0; assume w.l.g. that Py < 0 for some jJEN. Let
y = -sgn p, then A§ep 20, Aifp <0, Py < 0, hence the system

A = e. cannot have a nonnegative solution due to

Aye*y ~ yEX2
Farkas lemma.®
Corollary 6.5. Let Ay be positive definite for each y&Y.

Then AI is regular.

Proof. Follows from theorem 6.5 since each positive definite

matrix is a P-matrix [81 . B
The converse implication is, however, not true:

Example 6.1. The interval matrix
[-1,3] 1
al =
1 (o]
is obviously regular, but none of the matrices Ay (ye Y)is posi-

tive definite.

Finally we show that theorem 6.5 will not remain true if we

. — 21 .
replace the matrices Ay = AyeAyf by matrices A

-1
YeAyf
Example 6.2. The interval matrix
[1.5,3.5] [-0.5,1.5]

[0.5,2.5] [1.5,3.5]

al =

is singular but all the matrices A A;é (er) are P-matrices.

ye
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7. Interval inverse representation

In [23] we proved that if AI is regular, then for each y€Y, j€N

_1 .
vz/.3 2 0. Generally this z need

3 does, since obviously (A;;) 3 is equal

I q q -1
to x. for the system A x = e.. Hence if we define z_. = sgn(A .
Y . j ine zyy = 89 ( yz)-]’

2 O.

there exists a z&€Y such that TZ(A

. -1
not be unigue, but (Ayz

then Zu4 is correctly defined and satisfies T, .(A;; .).j

Now let Q = {(y,zyj); vYEY, jeN} . Then we have the following
theorem, which is similar to theorem 6 in [22] , but works with

A;;’s instead of with obscure matrices B:

Theorem 7.1. Let at be regular. Then for each AG.AI there

exist nonnegative diagonal matrices L ay,z)ecz)satisfying

vz
L = E such that
% by

-1_ -1
a ZQ Nt 2 (7.1)
holds.

-1
VZ_ .
1 e -1
for the system A"x = ej, from theorem 1.3 we have (A ) 3 =

Proof. Fix a jE€N. Since (A ) j are just the vectors xy

- -1 =
= ;%yj <Ayzyj)‘j for some nonnegative '7\ vi' ZY A v3 1. Now

we obtain the desired result when defining the diagonal matrices

L, by (Lyzyj)jj =-7\yj (yey,jeN).l

vz
Corollary 7.1. Let AI be regular. Then for the exact interval
inverse (AI)_l = [ B,B] we have
-1
B = min A
_ o ¥ (7.2)

max A—; .
0 Y

|
]
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Proof. Immediate, since for each A& AI and each i,j €N,

-1

(A-l) .. 1s a convex combination of (A :
1] yz/1i

5 (y,z)EQ.I

I . . -1
If A~ is inverse-stable, then Q = {(y,zj); vYEY, zy = sgn(Ac).j,

jeN}. 1f al is positively invertible, then Q = {(y,e); vé Y}.
In the general case the structure of Q is difficult to judge;

but notice that (7.1), (7.2) remain true if Q is replaced by YxY.
a’lL

0 Y% Yz

AEAI, in the general case, for otherwise the solution set of

Also, not each matrix of the form is equal to some A_l, ‘

each system AIx = ej would be convex.

8. Nonnegatively invertible matrices

We shall give here an elementary proof of three necessary and
sufficient conditions for nonnegative invertibility of an interval

matrix. (iii) and (iv) are known from [10), (22] .

Theorem 8.1. The following assertions are mutually equivalent:
(1) al is nonnegatively invertible,
(i1) 1> 0 and f(x‘l(x -a)<,
(119 é_l 2 0 and 7t 20, .
(iv) al is regular and 3—1; 0.
Proof. (i) =»(iii), (i) = (iv): obvious. Denote ¥ = E" Y& - a).
{iv) =>(@1): it follows from theorem 6.2 that f(ﬁ) ‘-‘-fo(ﬁ) <1.
(i1i)=>(ii): we have (E -B)'= a2 =+ 2 (Z-12)> 0,
hence F(S)(l. (ii) =»(i): for each A€Al we have a =
= K(E -3 Y7 - A)) ; since 5)('1_\_1(7{ - A)) < 5)(3) <1, it follows

that A = (i(?\'l(i -a)))a > o m
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In proving (ii) =5 (i), we achieved this result.

Corollary 8.1. Let AI be nonnegatively invertible. Then for
each AEAT we have o
-1 —1f= §)=m1
a"l= (Z(A (= - A))J)A .
Jjso
We may use this corollary to obtain a generalization of the
result by Barth, Nuding [1] and Beeck (5] (g 2 0 is replaced by
A 1lb 2 0):

Theorem 8.2. Let AI be nonnegatively invertible and let

=1 I

A 'b 2 0. Then for the exact interval solution [x,%] of alx = b

we have x =& b, X = "B,

Proof. For each x = A 'b, A€AT, beb?, corollary 8.1 gives
x 2 §~12 2 0. Thus Ax = b implies Ax £ b and x £ é_lB. Hence
x = A "b, x = ‘L. m

tn [22] it was shown that x = Xeo X = x, for positively invert-
ible matrices. This result can be extended to inverse-column-stable
matrices, i.e. to interval matrices satisfying A-sz > 0 for

some (fixed) z&Y and each AEAI. In this case we have x = x__,

X = X, - Obviously, Al is inverse-column-stable iff the interval

matrix [TZA Asz is positively invertible, i.e. e.g. iff

ze' Tz
-1 -1
T,A. )7 > 0and (T,A, )" > o.

9. Nonnegative solutions

Nonnegative solutions play important role in certain applications,

e.g. in interval linear programming. Obviously, the set of non-
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negative solutions X _ is described by X = {x; 2x £b, Ax 2 b, x 2 Oj
(corollary 1.2). We shall focus our attention here on two problems:

when (a) X, = X, (&) X, ¥ 9.

Theorem 9.1. Let AI be reqular. Then each solution x £€X is

nonnegative (positive) if and only if A;éby; 0 () 0) for each yE€Y.

Proof. "Only if": obvious. "If": denote ;;y = A;éby, then

“~ —~ ~
A _¥X =b_and T X 2 0, hence X_ = x_. Now the assertion follows
ye'y = Ty ey = y Ty .

from theorem 1.3. 8

Thus verifying nonnegativity of all solutions requires compu-
tation of 2% vectors xy; this, however, does not mean that one must
solve 2" systems Ayex = by. In fact, if y and y~ differ in just one
entry, then xy— can be computed from xy using lemma 1 in [227 .
Thus we are left with the problem whether the set Y can be ordered
in such a way that every two neighbouring vectors differ in just one
entry. Such an ordering can be easily constructed by induction on n:
(1) 1,-1 is the ordering for n =1, (ii) if Yyreeesy , is the
ordering for n, then (yl,l),...,(yzn,l),(yzn,—l),...,(yl,—L) is

the ordering for n+l.

Next we turn to the problem of existence of nonnegative solutions.
The following theorem was proved in [18] . Regularity is not assumed;.

notice the difference in quantifiers:

Theorem 9.2. A system alx = bI has a nonnegative solution if
and only if for each p satisfying ATp ; 0 for each AéAI there

exists a bebI such that blp 2 0.

This is a Farkas-type theorem. It has this consequence:
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Corollary 9.1. A system AIx = bI does not possess a non-
negative solution if and only if there exists a fixed linear
combination of rows which, as applied to any system Ax = b,
AGAI, b& bI, always produces an equation that does not possess

a nonnegative solution.

Proof. If AIx = bI does not possess a nonegative solution,
then theorem 9.2 assures the existence of a vector p such that
ATp >0, pr £ 0 for any aenl, b&bl. Taking a linear combination
of rows with coefficients Py (iéb@), a system Ax = b 1is brought
to the equation pTAx = pr that cannot have a nonnegative solution.
Conversely, if such a p exists, then the assumption of existence of
a nonnegative solution to some Ax = b leads to the existence of a

nonnegative solution of the equation pTAx.z pr, a contradiction.m

10. Interval linear programming

An interval linear programming problem is a problem of the form

max {ch; Ax= b, x2 O} (10.1)
where A,b,c are not exactly known: Aé’XI, bebI, ce?:'I (’A‘I is of
size nxm; the symbol AI is reserved for certain square submatrix
of XI) . We shall assume that for each such A,b,c the problem (;O.U
has a finite optimum (necessary and sufficient conditions were given
in [17]); let us denote the optimal value of (10.1)by £(a,b,c) .

Several problems arise in connection with this formulation:
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(a) Compute the upper bound of optimal values

h = max{f(A,b,c); AG'KI, bEbI, CGE'I_} .
It can be easily seen that h can be computed by a linear programming
method:

"= max{%Tx;zxéﬁ,?Kxag,x'ao}, (10.2)
In [18) , a duality theory for this problem was developed (notice
the additional duality between "weak" and "strong" solutions of
(P) and (D) there; it can be also extended to inequalities provided
nonnegativity of the primal solution is retained) resulting in the
optimality criterion 3.4 (in [18]) which implies this algorithm,

working, in contrast to (10.2) , with problem of original size:

Algorithm 10.1.

0. Set y = e.
1. Compute h = max{?Tx; X x=b ,x2 O} and
ye Y
a dual optimal solution p.
2, If Typ > 0, terminate with h =h.
3. Otherwise select a j with yjpj < 0, set yj = -yj
and go to step 1.

The following theorem was proved in [19] :

Theorem 10.1. Let d'\> O and let each nonnegative solution to
‘XIx = bI be nondegenerate (;i..e. it has at least n positive entries) .

Then algorithm 10.1 is finite.

Various improvements and schemes for performing this algorithm
in a tableau can be given. One scheme (with fixed-size tableau)
was suggested in [19] , another (with floating-size tableau) was

recently proposed by Mrdz [12] .
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(b) Compute the lower bound of optimal values
h = min{£(@,b,c); a€X, bEDT, ced} .
Taking A,b,¢ fixed and letting p be a dual optimal solution to (10.1)
we can easily obtain from the duality theorem that f(A,b,c)?

"~

2 f(Aye,by,E )}, where y = -sgn p. Hence
. ~ ~
I LR £(B,ebyiC)
which would require solving 2" problems (10.1). Due to the lack of an
optimality criterion, no analogon of algorithm 10.1 and theorem 10.1

is known as yet, as far as we know.

(c) Compute the upper and lower bounds of optimal solutions:

X,
-1

A "
= mln{xi; x& X }
= » R
x, = max{xi; xE&X } (15 N)/
*
where X is the set of all optimal solutions of all the problems
(10.1) for AGKI, b€ bI, c GE'I. In the general case this seems to Le

a difficult problem.

We shall show that the problems (a), (b), (c) can be rather
efficiently solved in a special case of basis-stable problems
studied earlier by Krawczyk [9] and Beeck [6] . An interval linear
programming problem is called basis-stable with basis B if for
each A€XI, beb?, c€ T, the problem (10.1) has a unique non-
degenerate optimal basic solution with basis B. We shall assume
without loss of generality that B is formed by the first n columng,

I, E'I can be decomposed into basic and nonbasic parts:

so that A
"AI = (AI,Aé ), (?:’I)T = (cIT,c:IT). Now the above problems (a),
N b), (c) can be formulated as problems of the form

max {ch; XE X} (10.3)

rhin {ch; xEX}’ . (10.4)



- 54 - B

where X is the solution set of AIx = bI ( AI is square!). In

fact, (a) is of the form (10.3) with ¢ = ¢, (b) of the form (10.4)

with ¢ = ¢, (¢) of the form (10.3) or (10.4) with ¢ = e;, 1EN

(if i> n, then x; = x; = 0). Furthermore, we need not solve

the problem (10.3) or (10.4) by the simplex method, but instead

by the following algorithnl(making use of the special structure

of our problem), which was developed by the author in collaboration .
with the. undergraduate student I. Bures f?J(hsually, solving one

problem (IO.L)must precede to determine the basis):

Algorithm 10.2. ( for solving (10.3)).

0. Set y = e.

T
1. Solve Ayex = by' Ayep

2. If Typ,; O, terminate. x is the optimal solution of (10.3).

= c.

3. Otherwise select a j with yjpj < 0, set yj = -yj

and go to step 1.
In the case of solving (10.4), the stopping rule would be Typ.é 0,
hence in step 3 we would search for a j with y.p. > O. Also the

3%3
following theorem holds for (10.4) with this change:

Theorem 10.2. Let the original problem be basis-stable and
let the basic system AIx = bI be normal. Then the algorithm terminat'

in a finite number of steps with an optimal solution to (10.3) g

Proof. Notice that the assumptions of theorem 2.4 are met,
so that the algorithm goes along the edges of the convex polyhedron
X. If xy, xy» are neighbouring extremal points with y, v~ differ- B
ing only in the j~th entry, then from lemma 1 in [22) we obtain

Xy, - nxy - ﬂyj(A;é .3 for some ,4 >0, so that el

- T
X - Scx - ‘P B
y y FYJPJ
Hence at each step the objective value increases, which assures

finiteness. If Typ ;.O, then the objective value does not increase
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along any edge emanating from xy, hence chy is optimal due to the

convexity of X. @

Wwith the help of lemma 1 in [22] , the algorithm can be perform-

ed in a tableau form, storing A;é, x, p and y at each step. Details
are left to the reader, as well as deriving a verifiable sufficient

condition for basis-stability.
11. Problems

Several problems I have failed to solve are listed here. Maybe
some of them are easy, in which case I apologize to the reader,
who, I hope, will be more successful in solving them than I did:

Problem 1. Describe Conv X by a system of linear inequalities

in terms of input data AI, bI.

Problem 2. Does an analogue of theorem 2.4 hold for the set

Conv X in the general case?

Problem 3. Develop a linear programming procedure for computing

X., ii directly. Can corollary 1.4 be used for this purpose?

=i
Problem 4. Develop an efficient nonlinear programming procedure

for computing X, ii directly.

Problem 5. Is algorithm {20, p. 51] finite for an arbitrary

regular matrix AI?

Problem 6. Does there exist a necessary and sufficient condi-
tion for the iterative method [21, Eq.(ll)] to converge? ( S‘(D)(/’

is sufficient, but not necessary; what about maxﬁ(Angyde)( 1 ?)
Y2
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