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l, Introduction and notations

In this paper, we present a general method for solving an interval

Ix = b‘.L with a square regular interval matrix AI.

linear system 4
The results are based on a link between interval linear algebra
and the theory of linear complementarity, established in the-
orem 1 below., The paper is written rather briefly, with the proofs
omitted. Emphasis is laid on computational aspects; several further
theoretical consequences are not mentioned here.

Notations used are basically the same as in [11]. we shall deal
with nxn real or interval matrices; for the sake of brevity, let
N = {l,2,...,n}. The ij-th coefficient of a matrix A is denoted by

A the i=-th row by A, , the j~th column by A j (i,j&N). The

ij?
matrix JAl is defined by lal T IAijl for each i,j (similarly for
vectors). S°(A) denotes the spectral radius of A. An nxn interval
matrix AI and an interval n-vector bI are defined by AI =

2 I |
[AC-A,AC+A] = {A; AC-A$A5A0+A} s O = [Dc—é‘,bc+c§\_—] =
{b; b~ 4« bﬁbc+J}, where A 20, d>o.
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Let e = (1,1,.0.,1)T€R™ and let f = —e. We denote Y =
{yeRn; lyl = e}, so that Y has 2 clements, e€Y and fTE€Y.
Por each yeY, let Ty be the diagonal matrix whose diagonal is
formed by the vector y; thus Te = E (the unit matrix) and
Tf = ~E, The k~th column of E is denoted by €. Por each y,z€Y,
we introduce an important notation

A = 4, - TyATZ

J
b, = b + Tyd' , .
implying AyzéAI and bye ol. For xG_Rn, we define a vector sgn x
by
14f x,2 0
(sgn X)i = (ieN)o

-1 if xi< 0
hence sgn x€Y and if z = sgn X, then [x]| = T x.
Let X be a compact (especially, finite) set in R®, We introduce
n-vectors min X, max X by

(min X)i = min{xi; x€ X}

(max X); = max{xi; X€ X} (ieN),
so that (min X, max X] is the narrowest interval containing X.
For each x&R", we define x*, x_ by x* = max{x,o} y X = max{-x,o};
then x* 2 0, X2 0, x = x* = x" and x| = x* + x_. The convex ‘

hull of X is denoted by Conv X.
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2. Basic results

Consider an interval linear system

alx = ot

(1)
with an nxn interval matrix Al = [AC—A,AC+AJ and a right-hand
side interval n-vector bl = {bc—cf,bc+6] . oT is assumed to be
regular (i.e. each aeal is regular), The set X = {x; AX = b,
AeAI, & bI} is called the solution set of (1), the interval
vector X! = [:_{, %], where x = min X, X = max X, is called the
interval solution to (1).

Oettli and Prager [9] described the solution set by X =
{x; la.x - b |€ Alx] +é\} . Our approach is based on an observa-
tion leading to a conjecture justified later in theorem 2 that
each extremal point of Conv X satisfies the equation

lAcx-bcl=A{x|+(5’ 5 (2)

In order to bring this equation to a more usual form, dut

y = sgn(Acx ~ b,), so that [Acx = bc] = ’I‘y(Acx - b,), and

substitute x = x* = x~, |x| = x* + x". Then we get
+ -
= A
X g5 * L (3)
where
= A1,
Ay = Ayi“yf
= Ao .
Wy = Aye

Thus we have replaced the equation (2) by 2% equations of the
type (3) (for all possible y&Y). The equation (3) is nothing else
than a linear complementarity problem [4] . We shall show that
under the regularity assumption each equation (3) has exactly one
solution. To this end, we need several preliminary results. First,

we state this theorem:



Theorem O. Let for each y€Y the equation
1 2 _
Ayex - Ayfx = by (4)
have a nonnegative solution x;, x‘g. Then for each AGAI and bébI,

the equation Ax = b has a solution belonging to Conv {x; - x§; yéY}.

The proof of this theorem can be drawn from the proof of theorem 1

in [10]. Notice that premultiplying (3) by Aye yields A R By g =

y

by’ hence (3) is of the form (4). Second, we shall need this lemma‘

whose proof is straightforward:

Lemma 1., Let A be a regular nxn matrix and let Dj be a matrix
whose all rows except the j-th are zero. Let ol =1 + (DjA"l)jj.
Then we have:

1 1

(i) if ob>0, then (& + Dj)-l =4t -3 A-lDJ.A" ,

(ii) if o(%0, then A + tD, is singular for some t € (0,1]).

Third, we shall utilize the result by Samelson, Thrall and Wesler
(12] in the form given e.g. in [ 4, p. 90]: An equation x* = AX + W
has exactly one solution for each right-hand side w if and only if
A is a P-matrix. (Recall that A is called a P-matrix if all its
principal minors are positive.) Now we are able to state our first

basic result.

Theorem 1l. AI is regular if and only if Ay is a P-matrix for

each y& Y.

The "if" part of the proof follows from the above result by Samelson
et al. and from theorem O (applied to systems Alx = e JEN).

In the "only if" part of the proof, we first use lemma 1 to prove
(by induction on j) that all leading principal minors of AefA:é

are positive, then (using permutations) that all its principal
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minors are positive. Next, employing the transpose of AI and its

premultiplying by Ty, we conclude with the P-property of Ay (veY).
Now, using theorems O and 1 and the result by Samelson et al.,

we obtain the second basic result:

Theorem 2., Let AI be regular. Then for each y€ Y, the equation
(3) has exactly one solution xy. Moreover, we have xyeX for each
YyEY and Conv X = Conv {xy; yéY} ; especially,
min {xy; yE Y}
max {xy; yEY} .

(5)

P I 1

For computational purposes, it is useful to rearrange the equa=
tion (3) to some equivalent forms. Returning from x+, x_ back to
%, |x] , we can bring (3) to the form

x=Dylxl + 4 (6)

y’
where
D, = AEiTyA
d, = A 7By
thus obtaining a fixed-point equation. PFurther, letting z = sgn X
and substituting x| = I, %, (6) gives an eguivalent system
Ayzx = by
T,Xx20. (7)
Due to theorem 2, both (6) and (7) have a unique solution Xy
Accord.ing to (5), for each i€N we have X = (Xy)i for some
y&Y (similarly for ;i)’ Our third basic result specifies some
property of this y; its proof follows from lemma 1 applied to

system (7):



Theorem 3. Let AI be regular. Then for each i€ N we have:

i = X atisfvine ~1 T
(i) %y (ky)i for some y€Y satisfying (Aszy)i. <07,

where z = sgn x_,

J
R U | T
(ii) X = (}\.y)i for some y€Y satisfying (Aszy)i.> o,
where z = sgn x_.
¥
3. Computation of X, ‘s .

In view of theorem 1, we may use the standard algorithms by

Cottle and Dantzig [ 3] or Lemke [6] to solve the linear complement-
arity problem (3). However, due %o specific features of our problem,
we shall get a far simpler algorithm for computing xy when employ-
ing the result by Murty [8] for solving the system (7). Notice
that the condition T, x 2 O is equivalent to Z 5% 2 0 for each j&N.

J

The following "sign accord algorithm" solves the system A X = b

J ¥

for different z until this condition is met:

Algorithm 1 (computing xy for a given y&Y).
Step 0. Set z = e.

Step 1. Solve Ayzx = by. .
Step 2, If sz 2 0, terminate with xy = X,

Step 3. Otherwise compute k = min {j; z;%; < O}.
Step 4. Set 2 = =2y and go to step 1.

Using the Murty s result combined with theorem 1, we get this theorem:
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Theorem 4. Let AI be reg:ular. Then the algorithm is finite

for each y& Y.

The algorithm proved to perform quite satisfactorily on test examples,
taking an average of 1 to 2 returns to step 1 before stopping in
step 2. Nevertheless, for large-size examples it may be useful to
modify it in such a way as to avoid solving a new system at each

‘ return from step 4 to step 1. This modification is possible due to
the fact that the new system differs only in the k-th column from
the old one. The computations can be performed in a tableau of

the form

where x and z are as above, A is an nxn matrix which is at each

step equal to A;; and p is an additional pivoting column.

Algorithm 2 (computing Xy = tableau form).
. -1
Step 0. Start with A4 = Ajg, X = Ab,, 2 = e, A= 4 .
Step 1. If T,x » 0, terminate with X, = X
Step 2. Otherwise compute k = min {j; 2 5% < O} .
!
. Step 3. Compute p = 2zkA(A ).k + epe If by £ 0, stop!
AI is singular. Otherwise proceed to step 4.
Step 4. Perform the Gaussian elimination with the rows of the
tableau (except the last column z, which remains un-—
changed) with pivot p, so that p become e.

Step 5. Set Z), = =2y and go to step l.



The finiteness of this algorithm follows from the fact that
it generates the same sequence of vectors x, z as algorithm 1.

Another algorithms, this time of iterative type and under
additional assumptions, are based on solving the fixed-point

equation (6). First, we may use iterations of Jacobi types:
o

xy = dy .
x?:Dylx; |+ d, (= 1,25004)
It SD(IDyl ) € 1, then x?——?xy. Since S-’(IDyl )és:> (D), where .

D= IA;]'IA sy the convergence for each y&Y can be assured by
the assumption
?(D) L1, (8)
as it was done in [11] .(Note: if Djj > 1 for some jEN, then
AI is singular.) Second, we may use iterations of the Gauss-Seidel
type. Let Dy = I"y + Uy, where Ly is a lower triangular matrix with

zero diagonal elements and Uy is an upper triangular matrix. Then

the Gauss-Seidel iterations have the form

% -4
¥ Y 1
il ol
= = l sne /e
%’; Lylxy| + Uyl”x‘; | + d, (m = 1,2,...)

Let D = L + U be an analogous decomposition of D into triangular
matrices. Then, if D is an irreducible matrix (e.g. D > O or
A > 0) satisfying (8), then ?{’; —>x, and we have f((E - L)-lU)<
53 (D) showing that the Gauss-Seidel method can be expected to .
converge faster than that of Jacobi.

Under more strong assumptions, xy may be also computed when using
a variational inequalities techmigue [5, pp. 15~17] or a linear
programming technique similar to that of Mangasarian £71.

A detailed investigation and comparison of the methods described

was performed by Baumann in his thesis [1] .
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4. Interval solution

Being able to compute the xy 's, we can evaluate the interval
solution (x, X1 according to (5). We shall show here that in most
practical cases there is no need for computing all the 2" vectors
xy. The clue to such a reduction is contained in theorem 3. Recall
that the condition (A;Ty)i. > of is equivalent to (A;JZ')ijyj >0
for each jEN. To be able to utilize this result in an applicable
manner, assume we are given an estimation of the interval inverse
of AT, i.e. an interval matrix - (s, %1 such that A”te®!
for each A€AT. Now for each i€ N define

vo={ys ¥y =1 (855 0y vy =1 (§'ij< 0),

lyjl =1 (otherwise)}

and let
n
r, = U (yu-y)
i=1l
(here, -Y, = {-v; ve Y-l} }. Then theorem 3 gives this result.

Theorem 5. Under the above notations, we have
x; = min {(x);; ye-v}
= max { (xy)i; yEYi} (ieN),

»l

i
hence also

min {xy; ero}

max{xy; ero} 3

Wl

To obtain an estimation of the interval inverse is seemingly a
difficult problem in the general case; but there are several
important classes of regular interval matrices for which it can
be done easily. First, consider interval matrices satisfying (8)

(a condition met by all the published examples, as far as we know).
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Here, we can simply put
-1 -1

act - cfla7

-1 -1

acs +clazd
where C = D(E ~ D)™} (ef. L11]).

ol W

Next, consider interval matrices satisfying fA"ll > 0 for each
AéAI; we call them inverse-stable matrices. In this case, each
Y, (1€N) consists of a single vector, ramely Y, = {y(i)} » wWhere

y(i) = sen T, . ®
hence at most 2n vectors Xy are to be computed. An interval matrix
satisfying (8) is inverse-stable if CIA;ll <\A;1| holds.

As a special case, consider positively invertible interval
matrices (A™F> 0 for each A€AT). Then Y, = {e} for each i€N,
hence x = X, and X = X, Thus we can either twice use algorithm 1
(which is similar to Beeck’s algorithm 2] in this case) or compute
X, X by Jacobi (Gauss-Seidel) iterations using the fact that (8)
always holds for positively invertible matrices (a consequence of

the Perron~Frobenius theorem).

5. Regularity and invertibility

In this section, we give some results concerning interval matrices;
these results can be obtained from theorems O=3 wheh applying them
to systems alx = ey (jen).

For a regular interval matrix AI, the inverse interval matrix
Bl = [_]2, BJ is defined by
min {47Y; a€aT)
max { A-l; AE AI} 5

<1 I I+
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Theorem 1 gives no hint how to compute BI; such an information is

contained in the following, more complex, theorem:

Theorem 6. AI is regular if and only if for each y&€Y the

matrix eguation

- —1
B = Dlel + A,

has a solution By. If this condition is met, then By is unique for
. each y&Y. Moreover, for each AEAI there exist nonnegative
diagonal matrices L (y€Y) satisfying Z Ly = B such that

B L
ez
holds; esp901a.lly, we have
= min {By; er}

(9)
max { By; yE& Y}

wl o

L}

™
Assume that SD(IDyl) < 1; then the sequence {B];Jm=o given by

o -1
B) = A5
B = D IBm'1|+ At (m = 1,2p0e0)

tends to B (hence, ma,x S\’(ID |) € 1 is 2 sufficient regularity
condition general:\.zlng (8)). Por practical computations, Y may be
replaced in {(9) by Yo constructed in the same way as in section 4

(ef. C11) ).

. We have also this general result:

Theorem 7. Let AI be regular and let i,j€&N. Then, we have:
. -1 T
(i) B; (Ayz)l;; for some y,z€Y satisfying (Ayz y)i £ 0,

-1
(mszz) >0 )
(ii) B. = (Ayz i3 for some y,z€Y satisfying <Aszy)1 o,

-1

(Tszz) ;20

This theorem is of special use for inverse-stable matrices. In
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this case, letting

y(1) = sen (a7h),
2(5) = sen (A70) (1,i€1W),
we obtain simple formulae
.=l
By; = ‘A—{(ihz(j))id
Bis = (AyT4),2(5) 13 (3,510,

enabling us to compute BI

step by step.
We conclude this section with three theoretical results character-
izing regularity, inverse~stability and positive invertibility by

necessary and sufficient conditions.

Theorem 8. AI is regular if and only if for each y&Y and each

-1
yz).j 2 0.

jEN there exists a z &Y such that (TZA
Theorem 9. A® is inverse-stable if and only if ‘A;]z' - A;ll< IA;:L,

for each y,ze€Y.

Theorem 10, A regular interval matrix AI is positively invertible

if and only if AT: > O.
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