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AN ALGORITHM FOR SOLVING INTERVAL LINEAR SYSTEMS
AND INVERTING INTERVAL MATRICES

by

J. Rohn, Prague

l. Introduction and notations

Presented here is an algorithm for solving an interval linear
system Alx = bl with an nxn interval matrix Al = (a~a ,a+al.
The algorithm is performable if the spectral radius of the matrix
[A;:L{A is less than 1 and compates the ifiterval solution (or: the
interval hull of the solution set) with arbitrary accuracy by
solving iteratively p nonlinear nxn systems of the type
x = Dyle- d s where 2 £ p £ 2%, If all the coefficients of
A;l are nonzero and A’ is sufficiently narrow, then p < 2n.
The proof of the underlying theorem is placed at the end of the
paper. The algorithm, if rearranged, gives an algorithm for comput-
ing the inverse of an interval matrix with arbitrary accuracy.
Several notations used throughout the paper are introduced here.
The inequalities "< %, "< " are to be understood componentwise.
The ijeth coefficient of & matrix A is denoted by Aij and (Al

stands for a matrix formed by the absolute values of the coef-
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ficients of A. Matrix and vector intervals are defined by
(4= 4 54+ a] ={afla-a i< a)
[b~d o+ d] = {b“b - b, |<d}
respectively ( A 2 0, d = 0). If X is a compact subset of RD,
we put X = {-x[ xEEX} and define vectors min X, max X by
(min X); = min{x; [ x€x} ‘
(max X); = max{gil xé:x} {1i=1,444yn),
so that [min Xymax X] is the narrowest interval containing X.
Similarly if X is a set of matrices. If ye;Rn, then Ty denotes
the diagonal matrix with diagonal y, i.e. !Py)Jj
= 0 if 1 # j. The n-dimensional vector whose each

=¥ (j=1yeee4n)
entry is equal to 1 is denoted by e; thus E = Te is the unit
matrix. For x(an, we define a vector sgn x by
lifx, 2 O
(sen x); = : (i=lye..,n),
-1 otherwise

so that [sgn x|= e. If z = sgn x, then [x| = T, %o

e

2. Algorithm for solving interval linear systems

Consider an nx n interval linear system

alx = of (1)

o ahgral, ol =[v-d o+ d], 620, Iz 0.
Throughout the paper, we shall assume that the nonnegative matrix
-1
D= [ajiA (2)
satisfies

SD(D) < 1, (3)

where AI = [A
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where f denotes the spectral radius. Under this assumption,
Al is regular (i.e. each A€al is regular) and the solution
set of (1)
x={x|ax =5, real, ve vt}
is compact (see [4], [6]). In this section, we give an algorithm
for computing the interval solution [X,x] of (1), where x and x
are defined by
x=min X
X = max X.
Before doing so, we shall describe a construction of an auxiliary

vector index set Y . Due to (3), the matrix E = D is nonnegatively

invertible. Define

¢ =D -0 (4)
_ .=l -1
B =4zt - clagt (5)
~_ -1 51
B = a7 +claz, (6)
then C 2 0 and B < B, Purther define a matrix 5 by

lif§d3> 0

84y = -1 if By <0 (7)
0 otherwise (ipi=lpecest)e

This being done, let
= n - = . .=

1y = {veR |y = 8y (83500 vyl = 1 8y )} (8)
(i=ly...sn), s0 that ¥, has 2 1 elements, where p; is the number
of zeros in the i-th row of S. Finally, let

n

Y, = iszl(:fiu(--tri)). (9
Notice that Y depends only upon AI, Y, = =¥, and |y]| = e for each
ero, thus the number p of elements of Yo is even and p < 2",
Por the description of the algorithm, we shall also need the vector

x, = A2tb (10)
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and matrices Dy and vectors dy defined for each yg Y, by
_ =1
Dy =4, TyAl
4, = x, + A5 4
(recall that Ty is the diagonal matrix with diagonal y).

Y y
We have this result:

Theorem 1. Let (3) hold. Then for each y& Y,s» the sequence

oo
{xgl} o given by
o

SR (12)
11
= -1 =
x’; = Dy(x’; |+ dy (m=1,2,004)
tends to a point xyex and we have
x =min{x_| yeY
= {yl o} (12)
X = max{xy] ero}.

The proof of this theorem will be carried out in section 4. In the
sequel, we use the matrix norm |4} = m?x EJ_'_IAijland the vector
norm (x| = max|x;|. Let

p=ich. (13)
If 3’“= 0, then A = 0 and (12) becomes simply
minfa_ | yEY,)
max{dyl ero} .

Thus assume T > 0. As an immediate consequence of Theorea 1,

BT

we obtain this algorithm ( £ > 0 is a precision wanted):

Algorithm 1 (solving interval linear systems).
1 Compute AJ' and D,C,3,5,5 by (2), (4)=(7).
Construct Y by (8), (9). Let Y, = {yl,yz,...,ypj.

1

2
3 ii=l, xi1=x, §==xc (10).
4 yi=y
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Compute )gyn (m=0y 4peee) by (11) until & - xm-—l” <—€’ (13).
vy Y 7
Set 5:=min{lc,x?} y Xs=max i,x’;} 5

it=isl

o =N O wv

1f i £ p, g0 to 4. Otherwise stop! [ X,x ] is the interval
solution to (1) computed with precision £ (if the round-off

errors are not taken into account).

We add a few remarks.
(a) Por practical purposes, the condition (3) may be replaced
by a more easily verifiable condition
inf < 1 (14)
{since S’(D) < UDll ). A1l the examples from the literature the
author has tested satisfied (14).
(b) In some cases, the absolute value can be removed from (11).

in fact, as it will be shown in the proof of Theorem 1, the

inequality
+p <. o A=l o
|57 -yl = cldy - %] (15)
holds for each yeyo, m 21, p20. Taking m = 1, we have
I}(ﬁ“'l = dyl, < (C+ E_)lx; - x;l £ Cldyl for each p 2 0. Thus if

c‘.y satisfies
d
clagl < jayl,
then each x§ belongs to the same orthant as dy, hence Ix?l: sz§

where z = sgn dy and (11) may be replaced by

o-—
‘xy = dy 1
=D’ xm- d
%y Dy xy  * %
where D. = D_T .

“y. A
(¢) Also from (15), taking p-—>°°, we get ‘xy - xl;l_é clxg'r1 = x’;'l[

which implies [lxy - xx;ﬂ < 3"“1('; - x’;"l“ . Thus the stopping rule

used in the step 5 of the algorithm ensures [Ixy - :@ﬂ(é .
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(d) Contrary to xyex, as stated in Theorem 1, we have generally
x?ﬁ X. In fact, it can be proved using the Oettli-Prager result
. . 1
[14) that x7€X if and only if A|T| <4 || (re ¥y, n > 1).
(e) Assume that D satisfies a more strong condition than (14):

q
Ini < 3 ! ‘ (16)
where q = n}i:_llA;l[ ij0 @ = max [A;]‘l jjo Then clA:J'[ < |Azlfa.nd from
. 1.3 .

I S °
(5)-(7) we get sij;o for each i,j, thus each Y; consists of a
single vector, namely Y, = {(Sil".“’sin)T} (the upper T denotes
s . -1 ‘
transposltlon), where sij = san (A, )i.]' :
so that at most 2n sequences are to be generated in the algorithm.

for each i,j. Hence p < 2n,

The condition (16) is satisfied provided all the coefficients of

A;l are nonzero and AT
(£) Let (16) hold and let ATl > O. Then CAT" < 7%, which

gives (.~ A)H =B > oand (a+ A )2 > B > 0, hence AT is

is "sufficiently narrow".

positively invertible due to the Kuttler ‘s result [10,p. 240] .

Moreover, B > 0 implies sij = 1 for each i,js Thus we have

Y] = eee =Y, = _{e} , hence Y, {-e,e} » S0 that only two

sequences are to be generated. It will be shown in section 4 that

X = X__y X = X,y hence x and X satisfy

X, = AE:.'( Alf]fcr) an .
x, + Ag( Alxl+d).
For example, if b - d > 0, then x > 0, X 2 0 and from (17) we
obtain x = (A + 8 )M b= d ), T = (4= )7 b+ d); similarly
if b+ &€ Oor [b €& (ef. [3],[5).

(g) Notice that D__ = -Dy and d.y = 2xc -d

Y
which may be of some help in computations.

xl I

v for each yg Yo’
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Example 1. We shall demonstirate the algorithm on the 2x 2
example by Alefeld and Herzberger [2, p. 107J), which in our

notations has the form

1 [24 3
A, = 12
¢ 8 19

. bc =§e and 5=%e. Here we have

19 -3
-] _ i
be =27 ( -8 24)

q o .
and |IDj| = -22.7 < -237- =373’ hence the condition (16) is met and
from the sign pattern of A;l we conclude Y = {yl,yz}, where

yl = (1,-1)T and y2 = (-l,l)T. According to (11), the seguence

{xml} is given by

Y xol = 1%8(67,40)'2
(o 11
Jén = 1 ( ) Jgn-l © ( =1 2,'00)
7 W\ o 16 I yl."’xyl m=Zy
and the sequence {fnz} by
y
x°, = 1hg(45,72)"
y
0o <11
= l -l o = CX R ) L
":z-m(o ls)l’ia ,‘" *2 (m=1,2y...)

On a pocket calculator which rounds to seven decimals we obtained

X/ = 6. = (0.6379309, 0.3448276)T
¥ ¥
<, = x5, = (0.3800000, 0.7199999) T
y ¥

which gives
~ (0.3800000, 0.3448276)T
= (0.6379309, 0.7199999)7.

ME Ix
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The exact values, given in [2], are x = (%8, %)T s X = (é%, %—g)m.
Examples 2, For the 2xX 2 examples by Barth and Nuding [3, p.118]
and Hansen (8, p. 36] we bave B < 0, B > 0, hence S = 0. The
2X2 example by Nickel (12, p. 33) satisfies S

=1&ndsi 0

2 .=
otherwise. In all three examples we thus have p2= 4 and Yo :
{(1,1)1', (1,-1)7%, (-1,1)%, (-1,-1)T} . This is due to the fact that

the intervals are too wide compared with the values of coefficients ‘
of L;]‘.

Example 3, The 4 X 4 example by J. Albrecht (1], studied also
by Oettli [13) and Hansen [9] , satisfies (16) and we have S;, =
Su = =1 and sij = 1 otherwise, thus X, consists of 6 vectors
(1,1,1,-1)7T, (1,1,1,1)7, (-1,1,1,1)T, (-1,-1,-1,1)T, (-1,~1,-1,-1)7T,

(1,-1,-1,-1)T. We do not go into computational details here.

3. Algorithm for inverting interval matrices

Let AI = [Ac-A WA+ 4] ve again an nXn interval matrix satisfying
(3). The interval matrix B! = [B,B] defined by
B = min {A‘ll aeatl} @
B = max {a7] a€a'}
is called the interval inverse of AI. With Yo being defined as
before, from Theorem 1 we obtain this result (to be again proved

in section 4)t
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Theorem 2. Let A* satisfy (3). Then for each yEYo, the

oo

sequence {Bx;}npo given by
o _ ,=1
By = Ac
_ - -1
B;-Dy[B‘;]" + Al (m=1y2pe00)

tends to a matrix By amd we have
min {Byi yéYo}
max {B, | yex,} .

wl w

So we have

Algorithm 2 (inverting interval matrices).

-1 and 0,¢,8,8,s by (2), (4)-(7).

Compute Ac

is=1, §:=A;l, Be=al.

yi=y*

Set B:= min{_B,B?} y Bi= max{TB,B?} .

is=i+l

@ ~1 O M s W N

1
Comstruct Y by (8)y, (9). Let Y, = {y ,y2,...,yp}.

Compute By (m=0,1,...) by (18) until e - B’;"l" <

(18)

(19)

£

s

If i < p, g to 4. Otherwise stop! [ B,Blis the interval

inverse of AI computed with precision & (if the round-off

errors are not taken into account).

The stopping rule used in step 5 ensures "By - B;ll <&

(13).

as before.

1f the condition (16) is satisfied, then again at most 2n sequences

are to be generated.

' Example 4. The 2x 2 matrix by Moore [11, p. 52], although a

narrow one, does not satisfy (16) since Azl contains zeros. We

have p = 4, but the convergence is a fast one.
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Example 5. The 3x 3 matrix by Hansen [ 7, p.315] satisfies (16) '
and Y = {(1,-1,1)T, (-l,l,-l)T} » S0 that only two procedures are

to be used.

42 Proofs

Proofs of both theorems are given in this section.
Proof of Theorem 1., Put Y = {ye R*[ly] = e} , so that Y, CY,
and {x;'} to the whole of Y.

and extend the definitions of Dy, dy
Let y& Y. From (11), for each m > 1 we have lx;“'l - x;'lé

D,x’;,1 - x;l-ll and by induction for each p 2 O, Ix;"p - x";,—‘-
(De...+DP) |22 - :é;“ll < ol - x’;‘ll £ coPlayl. Since D" —> 0
due to (3), the sequence {x?} is a cauchian one, thus convergent;

let x’;—)x . Taking m—°° in (11), we see that xy satisfies

xyy= Dy |x | +dy . (20)
Put z = sgn Xy, so that ()%]z T,%y+ Then (20) gives
(A, ~ T AT)x, = b, + Tyd‘ o
%, > 0. '
Since ITyA T,/=4 and \Tyd"]:cf » We have A = TyATzeAI and .

b, + myé"e bI, hence xyex. Furthermore, (21) in the notations of

[15) means that xy solves the system A_y 72X = b—y' x2 2 0. Thus
. ?

the assumptions of Theorem 1 of [15) are met and we obtain

= min {xyl ye Y}
= max {xy, er} .
Next we shall prove that for each i, i=l,...,n, we have

(22)

Ml I
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;i = (xy)i for some y&Y;. {23)

First consider the case d > 0. According to (22), ':'ci = (xy)i
for some y€Y. Assume for contrary y¢Yi, so that Sij ==Yy
for some j, €«8& Sij =1, vy = ~l. Prom (21) we have Axy = b, + TyJ’
for some A€ Al. Since A.-lECB,'f] (as it can be easily verified),
8y = 1 implies A L 5 0. Defining y” by yJ = =¥ y1; = ¥y (k#3),
for the vector x'= l(bc + T ‘(5\) we obtain x°€ X and xi' >
(x ); = 'ii. a contradiction. g:’unila.rly if 54 = -1, ¥; = 1.
Hence y&Y;, which proves (23).

Second we prove (23) for the case of an arbitrary nonnegative d’ .

Por k = 1,2,... define d, = J + fe (so that dy, > 0
bk = (v, - Jk'bc + cf‘k] and consider the interval solution

[xk 7] of the system alx = b]I‘. According to what we have just
proved we have x“ , where xk satisfies
= = l +ay + Lt (24)

for some ykeY + Since ‘{ is fmite, there exists a yéY such
that y, =¥ for infinitely many k. Thus the sequence {xk} Y=y ’
whose all elements belong to the compact solution set of the
gystem AIx = b:IL, contains a convergant subsequence {J_( j},

X
3 _5 ¥ Taking k,—>%, from (24) we obtain f=D ME R

J
which, if combined with (20), gives [=*- x| = D|x*~ x|, hence
(E - D)‘x*- x | £ 0, and the nonnegative invertibility of E-D
implies <= Xy Since :3‘—):(1, we have x:L = (x )1, which gives (23).

Since xyé_x for sach y€Y, (23) implies

X, = max {(x ). ]erJ} (25)
In & similar manner we would obtain
x, = min {(xy)ij vE -!i}. (26)

Since Yiu(-Yi)C_Yo for each i, (25) and (26) imply (12), which
concludes the prooi’.l.
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As the reader can see, we have proved slightly more than stated
in the theorem. (17) is a consequence of (25), (26).

For the purposes of the proof of Theorem 2, let (A):j denote
the j=th column of a matrix A. Let 1 < J % n; obviously, we have
(Q)j = ;j, (_B),j,,= %7, where [53,;'1] is the interval solution of
the sys‘l{em_

alx = e§‘_, (27) .

B L'eJ.,eJ.] v 8y = (E)J.. Let (xl;)j, (xy);j denote the vectors

J. =
xx;, x, from Theorem 1 for the system (27). Then from (11) we have

j -1
Y =0, [6F™H] + agh; (m=1,2,...)

which compared with (18) shows that {(x;l)j}m and {(B?)J.} *
m=0

where e

o 7 =0
satisfy the same recurrence, hence (xy)J = (Bny‘)j and thus
also (xy)i = (By)j for each m,y,j. Thie proves the convergence
and from Theorem 1 we have ‘

= xJ = mi b = mi
_(-]-3)3' = xY = min {(xyz [ ye’to} = min {(By);j [ yé!o} ’
which proves B = min {By( ye‘[o} . Similarly for 5. B
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