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1. INTRODUCTION

Let

(0) al

x = bI
be an interval linear system with an nxn interval matrix AI.
The set

X = {xl Ax = b, A€AT, bebI}
is usually called the solution set of (0). If al is nonsingular
(which means that each Ae‘LI is nonsingular), then X is closed,
bounded and connected [4], but generally not convex and not an
interval (3]. The narrowest interval containing X, i.e. the
interval [x, X] given by

x; = min {x;| xex}

%, = mex {x;| x€ X} (i = 1,..,10),

is called the interval hull of X. There is a number of results
concerning the problem of computing the interval hull under

special assumptions (see [1] - [14]). Less is kmown of the general

case. Nickel [13] pointed out that the interval hull of X can be
computed by solving 2n(n+l) linear nxn systems (in ordinary, not

interval, arithmetic). In this paper, we propose a method which
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reduces the number of linear systems to be solved to a number =
between 2P and 2P*9 where P is the number of equations in (0)
containing at least one nondegenerate interval coefficient and

q is the number of columns of AI

having the same property. As
shown in section 3, the method performed well on examples with
2x2 matrices. The present lack of a broader computational ex—
perience does not allow to judge of the efficiency of the method .

in general case.

2. BASIC RESULT

o

We begin with some notations. Let AT ={A|4 < a € X}, where
b

= I
A= (a::), & = (Eij) are nxn matrices and let bl = { IQ €£b < 3},

b= (2;), T = (T).l) being n-vectors. Purther, let
Y ={yeR®| lyyl =1 § = Lyeeern},

so that Y contains 2 elements. For each ye ¥y z€ Y define an

nxn matrix %'z and an n-vector b by

y
. o= @, . i 2. = 1
(Ayz)l;j a” if ylzJ ‘
= 8 if vz = -1 (iyd = 1yeseyn),
(by)i = hi if ¥; = 1
= Ei ify; =-1 (i = 1,00eyn)e

For xcR™ and z &Y we define an n-vector xZ vy
& .= X j = lyeeeynl)s
{x );l z 5% (i yeeeyn)
Finally, we denote by e the n-vector (1, ...,1) and f = ~e, so that
ecY and feY.

W0

Our basic result is then formulated as follows:
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Theorem l. Let AI

exist a z€ Y such that the solution xy of the system

be nonsingular and let for each yc Y there

(1) Ay X = by
satisfies
(2) x; > 0.

Then the interval hull [x, x] of the solution set X is given by
x; = min {x,| vey}
X; = max {xyil er} (i =1,0ee9n)s

The proof employs the idea of the constructive part of the proof

(3)

of Theorem 1 in [15]. Let W be the comvex hull of the points Xy
y€Y. Pirat we prove that XCW. To this end, take an X, € X, so that
Ax, = b for some AEAI, bg b*. Por each ref{0, 1, «..yn} and y€Y,
the nx2n system

(A(xl-xz))i—bi (i =1,0ua,r)

(Ayexl - Ayfxz)i = byi (i = T+l,04.,y0)

will be called an (r,y)-system. We shall prove by induction on r
that each (r,y)-system has a nonnegative solution X X satisfying

X, = X €W. If r = 0, then a (0,y)-system has the form Ayexl = AypX,

by, hence for the vectors X;, X, given by x4 = max{xyi, 0}, Xy =

nax{—xyi, O} (i =1,...on) we have x; > 0, X, 3> 0y, ) =X, €W and

i - = <
(1), (2) provide for AgeXy ye¥2 = by. Thus let 1€ r £ n and

- * L4 L4 : . _
yEY; define y°, y"e ¥ by v = -1, y5 = y; (3#r) and yp = 1, ¥§ =¥

(j#r). Due to the inductive assumption, the (r-1,y “)~system has a
nonnegative solution x{, x2' satisfying x]t - x2' € W and similarly the
(r-1,y")-system has a nonnegative solution xj, x5 with xi'. - xg € W.
Define a real funetion f of one real variable by

£(£) = (A(s(x[=x7) + (1-%) (x§~x5)))..
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Then, we have £(0) = (A(x}§ - x8)). < '(Kxi'_ - ax§). =

(ByugX] = Aynpx3), = Br< by and £(1) = (A(x) - %))
(Ax{ ~ Ex))_. = (Ay ‘%] = Ay *¢X5) = b, > b, hence there is a

r
t,€ (0, 1] with f(to) = b,. Put

]

% tox{ + (1 - t)x
X, = t X, + (1~ to)xg,
so that Xy and %, are nonnegative and
(4) X = X, = to(xi - 2') + (1 -t )(xy - x3),
which immediately gives x - xze W. Prom the definition of to we
have (A(x:L - xz))r =b.. If1<1i < r, then (4) gives (A(xl - 2))1 =

t,b; + (1 = t)b; = by; if r4l < i< n, then y; = y; = yj, hence

(Aye%) = Aps¥p)s = o(Ayrexy = Agepxg); + (1 = £,)(Apugx] - Agmex); =

byi' Hence x;, X, is & nonnegative solution to the (r,y)-system A
satisfying X = X% € W, which completes the inductive proof. Taking
now r = n, we get that there are x,, X, satisfying A(x:L - x2) =b
and x; - X, € W. Then the nonsingularity of A implies X, =X = Xy
hence x € W. This proves XC W; since the interval [x, x] given by
(3) satisfies WC[x, X] , we have X C[x, X]. On the other hand,
since x € X for each y€Y, [x, x] must be the narrowest interval
containing X, hence [z, x] is the interval hull of X, Q. E. D. B
Theorem 1 shows a way how to compute the (exact) interval mall.
However, it requires for each yc Y to find a z€ Y such that the
vector Xy = A;;'by satisfies x; > 0. This may be a difficult task in
the general case; the heuristic algorithm for computing :\:y described
below performed well on small size examples, although it is probably

generally not prevented from cycling:

3
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Algorithm (for computing Xy for a given yeY):
Step 0t Set zize,
Step 1: Solve Ayzx = by,

Step 2: 1If x> > 0, set xy:=x. Stop!

Step 3: Set By S==2 for each k with Zy % < 0 and return to Step 1.
This algorithm combined with Theorem 1 gives a method for computing

the interval hull, Several examples are shown in the next section.

3. EXAMPLES

Three examples with 2x2 matrices are computed here. Two observations
were made: (i) the algorithm always stopped after solving at most

two systems, (ii) in all three examples, if % = i for some y and i,

X,
y
then ;i = (x_y)i.
Example 1 (Barth and Nuding [3]).
[2,41x) + [~2,1] %, = [-2,2]
-1,2lx + [2,4]x, = [-2,2]

First, we set y:=(1,1) and 2z:=(1,1). Then Ayzx = by has the form

4xl + X, = =2

2
2x) + 4%, = -2
and its solution x; = - %, ¥y = = % does not satisfy xz,; 0. Hence
we set z:=(-1,~1) (Step 3 of the algorithm) and solve
2% - 2x2 = =2
=Xy *+ 2x2 = =2 N

which gives the solution x; = =4, x, = = 3 satisfying x2 2 0.
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Thus we get
x(l’i) = (-4,-3).
In a similar way we obtain
X(1,-1) = (-3,4)
X(-1,1) = (3,-4)
X(-1,-1) = (43)
and Theorem 1 gives
= (~4,-4)
= (4,4).
Example 2 (Nickel [13]).
(2,4]%; + [-2,-1)x, = [8,10]
[2,50%, + [4,5]x, = [5,40]

£
X

Here, we have
1_1
*,1) = - 1P
x(1,-1) = (48)
0
x(—l,l) = (ig,' ig)

x(-l,-l) = (lO, 5) ’

thus
x= &~
¥ = (10,8).
Example 3 (Hansen [11]).
{2,3]x + [0,1)x, = [0,120]
(1,2]x, + [2,3]x, = [60,240] .

Here we obtain x(l,l) = (=12,24), x(l,—l) = (~-120,240), x(‘l,l) =
(90,-60), x(_y,_1) = (60,90), which gives x = (~120,~60) and
X = (90,240).

L]
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4, EDGE POINTS

A system of the form

©.(5) %zx = 'by

x? 2 0,
appearing in Theorem 1, may seem strange at the first glance.
In this section, we shall give some geometric interpretation
to the points satisfying (5). We introduce this notion: a point
x€X is ss,::ui to be an edge point of X if there does not exist
a pair of d::i.fferent points Xy,%, such that the segment connecting
x and x, lies in X and x = %(xl + xz). Por a characterization of
the edge points we need the following lemma, which is 4 mere re-
formulation of Theorem 2 in [4]:

Lemma, x€X if and only if there is a z €Y such that x satisfies

<
Afzx =

Ir ol

hog* 2
xZ > 0.

Now, we have (assuming again e

is nonsingular):
Theorem 2, Let x €R™ and let x; #0 (i = 1,¢esyn). Then, x is
an edge po:’Lnt of X if and only if it satisfies (5) for some y,z€¥.
Proof. The "if® part: Let x satisfy (5) and assume x is not an
edge point of X so that there are X;, X, & Xy xq # X,y such that
X = %(xl + x2); moreover, they can be chosen so closely to x so that
xi > 0, x; > 0. Take an i with y; = =1; then Lemma gives (Ayle)i =
(Afle)i < Fi and similarly (Ayzxz)i $3.1. Assume at least one of
these inequalities holds sharply; then we have (Ayzx)i <®; = bys
a contradiction. Hence

(6) (Ayle)i = (AyZXZ)i = (Asz)i.
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If

If y; = 1, then a similar reasoning again gives (6). Hence
Ayle = Ayzx2 = Ayzx, which implies X¥] =X =X & contradiction.
The "only if" part: Assume x is an edge point. Then there is

e unique z€ Y with x> > 0, so that Ap,x < b, 4,,% > b. Put

Jl = { i l (Afzx)i = 51}

Tp ={1] (aggx)y < By, (agym)y = By}
then J,NJ, = #. We prove Jud, = (l,...,n}. Assume it is not so
and consider the system (obviously, JyUJ, £ 8

egx); =0 (1€d)

(Aezx«)i A (1€9;)-

Since its number of equations is less than n, it possesses a non-

trivial solution x . Now choose a d > O such that (x + doxo)z> 0

8, [(ag %) 5] < By = (8g,%)
for each i with (Afzx):.L < by and

dy I(Aezxd)il < (Aezx)i - b
for each i with (Aezx)i> gi. Then the whole segment connecting
the points x; = X = d X 5 X, = X + 4 X, lies in X, x; # x, and
X = %(xl + x2), hence x is not an edge point. This contradiction
shows that J;ud, = { 1,...,n}. Now define y€Y as follows:

y; = -1 if 1€7J;,

Ii
Then we have Ayzx = by, which completes the proof. B

lif ied,.

Theorems 1 and 2, if combined, show that the edge points of the
solution set X play a similar role as the vertices of convex poly-
topes. Notice that all the x ’s in the above examples 1 — 3 are

edge points of the respective solution setis.

e

o

&
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5. DISCUSSION

A closer look into the form of the systems (1) shows that the
number of such systems to be examined lies between 2P and 2p+q’
where p is the number of equations in (0) containing at least one
nondegenerate interval coefficient and q is the number of columns
of AI with the same property. In fact, if the i-th equation does
not contain a nondegenerate interval coefficient, then all its
coefficients are real numbers and the change of the sign of ¥3
does not affect the form of (1); similarly for the j-th column of
AI. This shows that the number of mutually different by's is 2P
and the number of mutually different systems (1) is at most 2P+,
Under special assumptions, the number of systems (1) to be solved
can be essentially less, cf. Garloff [7].

Further, it is not necessary to store all the xy's during the

computation: after updating x and X, the current xy may be dropped

out.
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