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Abstract — Zusammenfassung

Strong Solvability of Interval Linear Programming Problems. Necessary and sufficient conditions
for a linear programming problem whose parameters (both in constraints and in the objective
function) are prescribed by intervals are given under which any linear programming problem with
parameters being fixed in these intervals has a finite optimum.

Starke Lisbarkeit von Problemen der linearen Optimierung mit Intervallkoeffizienten. Es werden
notwendige und hinreichende Bedingungen fiir das Problem der linearen Optimierung mit Inter-
vallkoeffizienten angegeben, bei dene¢n jedes Problem der linearen Optimierung, dessen Koeffi-
zienten in gegebenen Intervallen fixiert werden, eine optimale Losung besitzt.

1. Introduction

In this paper we examine necessary and sufficient conditions for a problem
max {¢T x| Ax=b, x>0} (1)

to have a finite optimum for any 4 € A%, b e b’, c e ¢!, where A’, b’ ¢! are matrix and
vector intervals, respectively. Such a problem can arise ¢.g. in case that (1) is a
model of a real-world situation which must be repeatedly solved for various
values of parameters ranging in known intervals. If a model has the above
property, which we call strong solvability, then one can be sure that an optimal
solution will be obtained at each computation,

- The above formulated problem consists of two subproblems: to find conditions

under which

(a) A x=>h has a nonnegative solution for any 4 € 4], be b!
(b) the problem (1) has a finite optimum for any A € A%, be b’ c € ¢! provided (a)
holds.

These subproblems will be discussed separately in the next two sections.
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2. Strong Feasibility

Let A'=[A4, A]={A| A<A<A}, b'=[b,b]=1{b|b<b=b}, where 4, 4 are two
m by n matrices and b, b arc m-dimensional vectors, A< A, b <b. For any Ae A/,
be bl a system

Ax=b 2

is called a subsystem of an interval lincar system A’ x = b’ A subsystem (2) is called
an extremal subsystem of A'x=b"if for each i, i=1, ..., m, its i-th equation has
either the form (4 x),=b, or the form (4 x),=b;. A subsystem (2) is called feasible
if it has a nonnegative solution. An interval linear system A’x=b'is called
strongly feasible if cach its subsystem is feasible. The strong feasibility can be
characterized in terms of extremal subsystems:

Theorem 1: A system A'x=Dblis strongly feasible if and only if all its extremal sub-
systems are feasible,

Proof: The “only if” part of the theorem is obvious. We shall give two proofs of
the “if” part, an existencial one and a constructive one,

Existential proof: Let Ae AL beb’ According to the Farkas theorem [1], to
prove that the subsystem A x=b is feasible, it will suffice to show that AT y=>0
implies b” y 20 for any (m-dimensional) y. Thus let A” y=0 for some y. Define a
subsystem

Ag x=by 3

as follows: for i=1, ..., m, the i-th equation of (3) has the form (4 x);=b; il y; =0 and
it has the form (4 x),= b, if y, <0. Then (3) is an extremal subsystem and A5 y= A" y,
bT y>bY y. Hence A} y=0 and the Farkas theorem as applied to (3) gives
bT y>0, thus b" y =0, which completes the existencial proof.

Constructive proof: Let Ae A', be b’ A subsystem whose i-th equation has the
form (4 x),=b; for i=1,...,r and has either the form (4 x);=b; or the form
(A x),=b, for i=r+1, ..., m, will be called an r-subsystem, r=0, , ..., m. We shall
construct by induction on r a feasible solution to any r-subsystem. At the last step,
we shall obtain a feasible solution to A x=b, which is the only m-subsystem. For
r=0 it is nothing to prove since each 0-subsystem is an extremal subsystem which
is feasible due to the assumption. Thus let 0<r<m and let to any (r— 1)-sub-
system a feasible solution has been constructed. Take an arbitrary 7-subsystem

Al x=b! _ (4)
and replace its r-th equation once by (4 x),=b,, once by (4 x),=b,. This gives rise

to two (r — 1)-subsystems that have nonnegative solutions x’, x”, respectively. Con-
sider a real-valued function of one real variable:

f,(H=(A@AxX +(1—1)x"),—b,, Aec[0,1].
We have '
£, (0)=(Ax"),—b,<(Ax"),—b,=0

f,(1)=(Ax"),—b,2(Ax),—h,=0,
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so that there exists a A, € [0, 1] with f,(45)=0. Put x=4, x"+(1 — o) x". Then
the above means that x satisfies the r-th equation of (4). Since for any i, i#r, the
i-th equation of (4) is identical with those of both (r— 1)-subsystems, which are
satisfied by x’ and x”, it is also satisfied by their convex combination x. Hence x is
a feasible solution to (4) and the inductive step is completed. Thus each r-sub-
system is feasible (r=0, 1, ..., m), hence A4 x =b is also feasible, Q.E.D.

Note: It can be easily seen that the number of mutually different extremal sub-
systems is equal to 27, where p is the number of rows of the matrix (A’ | b') that
contain at least one nondegenerate interval coefficient. Hence Theorem 1 shows
that 27 subsystems must be examined, as regards their feasibility, before the strong
feasibility of a system A’ x=b’ can be stated.

A subsystem (2) is called positively feasible if it has a positive solution (whose all
entries are positive). A system A" x="b" is called strongly positively feasible if each
its subsystem is positively feasible. We have a similar result:

Theorem 2: A system A’ x =bl is strongly positively feasible if and only if all its
extremal subsystems are positively feasible.

Proof: Again, only the “if” part needs to be proved. An existencial proof can be
carried out in a similar way as in the previous proof when using the Stiemke’s
theorem [ 1] instead of the Farkas one. Further, the construction given in the con-
structive part of the proof of Theorem 1 can be also used in this case, since at each
step a new solution is constructed as a convex combination of two previous
ones. Thus if they arc positive, then the new solution remains to be positive, Q.E.D.

3. Strong Solvability
A problem
max {¢T x| A x=b, x>0} (%)

is called strongly solvable in Al b%, c’if for any Ae A", beb’ ce ¢! the problem (5)
has a finite optimum.

Theorem 3: Let A’ x=>b! be strongly feasible. Then the following assertions are
mutually equivalent:

(i) the problem () is strongly solvable in A", b, c,
(i) the problem

max {¢7 x| Ax<b, Ax2b, x=0} (6)
has a finite optimum,
(i) max {¢7 x| 4 x<0, Ax>0, x=20}=0. N

Proof: We shall prove (ii) = (i) = (iii) = (ii).

(ii) = (i): Consider a problem (5) with some A € A, be bl c e ! If x is a feasible so-
lution of (5), then it satisfies the constraints of the problem (6) (see [2]), hence
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cTx<eTx<eT xy, x, being an optimal solution of (6). Hence the objective
function is bounded from above and (5) has a finite optimum.

(i)=>(iii): Let 4 x<0, 4 x>0 for some nonnegative x. Then there exists a matrix
Ay e A* with Ay x=0 (see [2]). Consider the problem (5) with A=A, b=b, c=¢.
Since it has a finite optimum, the dual problem to it is feasible (in the linear
programming terminology), hence the system

AT u—AT v+w=—¢ ®)

has a nonnegative solution u, v, w. Then the Farkas theorem as applied to (8) gives
that x>0, 4, x=0 imply ¢ x<0. Hence the optimal value of (7) is nonpositive
but since x =0 satisfies the constraints of (7), the optimal value is zero.

(iii) = (ii): Let x be a nonnegative vector with 4 x <0, 4 x>0. Then " x <0, which
in the light of the Farkas theorem means that the system

ATu—-ATv+w=—¢

has a nonnegative solution u, v, w. This shows that the dual problem to (6) is
feasible, hence (6) has a finite optimum due to the duality theorem [1], Q.E.D.

Note: This result shows that as soon as the strong feasibility of a system A’ x =b'
has been stated, only one LP problem (6) (with a doubled number of rows, how-
ever) needs to be solved in order to determine the strong solvability of the original
problem.

References

[1] Nikaido, H.: Convex structures and economic theory. New York-London: Academic Press
1968.

[2] Hansen, E.: On linear algebraic equations with interval coefficients. Topics in interval analysis.
Oxford: Clarendon Press 1969.

Dr. J. Rohn

Faculty of Mathematics and Physics
Charles University

Malostranské ndm. 25

CS-11800 Praha 1

Czechoslovakia

Printed in Austria
Druck: Paul Gerin, A-1021 Wien



