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ABSTRACT 

Nonnegative solutions of an interval linear system A% = b’ (A’ being an interval 
matrix and b’ an interval vector) with additional column sum restrictions of the type 
8, OL+Z,~ E[c~,Z~] Vj are described by a system of linear inequalities with auxiliary 
variables. 

INTRODUCTION 

An interval linear system is a system of the form 

A’x=b’ (0) 

with A’={AIA<A<A), b’z(b@<b<b), where 4=(gii),_x=(Q_iii)are 

m by n matrices, b=(&), b=(b,) are m-vectors, and A<A, b<b (the 

relation < is to be understood componentwise). A nonnegative ;r is said to be 
a nonnegative solution to (0) if there are A E A', b E b’ such that Ax= b holds. 
Oettli and Prager [l] gave a general result concerning the solutions of (0) 
which implies as a special case that nonnegative solutions of (0) are precisely 
the nonnegative solutions of the system 

(for a simple proof, see [2]). In the above definition of solution, the matrix A is 
not subject to any additional restriction, which, however, is not the case in 
some practical problems. 
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EXAMPLE. In the input-output model 

the number 

(E-A)x=y, 

I- $$Q, 

CM) 

which is equal to the sum of elements of the jth column of E-A, represents 
the value added per unit output in the ith sector of a national economy 
described by (M) (see [3]). Thus if the values of coefficients of A are not 
exactly known and (M) is to be treated as an interval linear system, then the 
bounds on values added must be taken into account and additional column 
sum restrictions of the type 

must be introduced. 
In this paper, we shall consider the problem (0) with additional weighted 

sum constraints being imposed on the columns of the respective matrix, i.e. 
the problem of the form 

A’x=hr, 

where the oii’s, oh’s, and Ci’s are given (arbitrary) parameters and gj <Zi 
(i=l,..., n). Accordingly, a nonnegative x is said to be a nonnegative 
solution to (1) if there is a matrix A EA’, A=(aii), satisfying Zi oiiaii E [ci, Ci] 
(j=l,..., n) and a vector hi b’ such that Ax= b holds. In the next section, 
we describe the nonnegative solutions of (1) by a system of linear inequalities 
with auxiliary variables. 

DESCRIPTION OF SOLUTIONS 

Denote 

Pi={i~aii>o, l<i&z}, 

Ni={i\aiitO, l<,i<m} (i=l,...,n). 
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Then it can be easily seen that the conditions (we write Z,,,Z,v, instead of 

2 tEPr’xiEy, respectively) 

are necessary for the existence of a nonnegative solution of (1). On the other 
hand, if for some j the inequalities 

hold, then the ith column sum condition does not impose any restriction, 
since we then have & eiiuii E [ci, Ci] for any A EA’. Thus denote by L the set 
of indices j for which at least one of the inequalities in (3) does not hold. 
Further, for i=l,..., m, i=l,..., n put 

ai, =aii -czii, 

pii =aiisii, 

xi= ~aipii-c. 
1’ 

so that the Sii’s are nonnegative and xi <j$ for each i. Finally, let 

K= {(i, i)ljEL Pi/ #O}T 

K’= {jl(i, j&K} (i=l,...,m), 

z$={i((i,j)EK} (j=l,...,n). 

In the following theorem, nonnegative solutions of (1) are described by a 
system of linear inequalities involving some auxiliary variables yii, (i, j) E K. 
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THEOREM. Let the conditions (2) hold. Then a vector x is a nonnegative 
solution of (1) if and only if it is the x-part of a nonnegative solution of the 
system 

i gij’j+ 2 SjjyjjGh, 
f=l jEK’ 

IS Gii’f+ C ‘ijxf+ 2 Giiyii2bi 

(Sl) 

(i=l,...,m), 

jEK’ j4K’ iEK’ I 

c32) 

yii &Xi [(i, i)EK]. cw 

Proof. 

(a) Let x be a nonnegative solution of Ax=h for some A EA’, h Eb’, the 
matrix A =(aii) satisfying the column sum conditions. For (i, i) EK define 

Yii = 
aii -aif 

gii’i 

(6ii >O, since pii #O). Then the yii’s are nonnegative and (S3) obviously 

holds. Further, we have 

aiixi =a iixi +Siiyii (4) 

for any (i, i) EK. This gives 

i iEK’ i 

and 

x aiiXi+ 2 Ziixi+ 2 SiiyiiZ~aii~i~~i 
jrh” j@K’ jEl<’ i 

for i=l,..., m, which is (Sl). Now, let j E L; if (i, i) @K, then either qi =O or 
aii =gii =Zji, in both cases aijaii=aiiaii. Thus we have 
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which gives (S2). Hence x and the yii’s satisfy (Sl)-(S3). 
(b) Conversely, let (Sl)-(S3) hold for some nonnegative x and yij [(i, i) E 

K]. We shall show that x is a solution to (1). The conditions (2) imply the 
existence of a matrix A” EA’, A~=(u:~), with Zicu,i~yi E[E~,~~] (i=l,..., n). 
Define matrices A_’ = ( “ii), Ar = ( Gfi) as follows: 

a?. =a~i=a~i if xi=O, 

gfi + =gij + 3&i 
xi 

if xi>0 and (i,j)EK, 

a?. =gii, ati =aii --If if xi>0 and (i,i)GK. 

Then both 4’ and 2 belong to A’ due to (S3), 4’ <A’ and (Sl) can be 
rewritten as 

hence there is a matrix A=(aij), A_‘&A<$, and a vector bEb' such that 
Ax= b holds. To complete the proof, it will suffice to show that 

&iiniiE[~i,Ei] (j=l,..., n). (5) 

If j 4 L,, then (5) holds due to the definition of L. If i EL and xi =O, then we 
have Bioiiuii =Zicwiiu~i ~[c+ Zi]; finally, if MEL and xi >O, then 

due to (S2), which implies (5). Hence x is a solution to (1). n 

COROLLARY. The set of nonnegative solutions of (1) is u convex polytope. 

Proof. Follows immediately from the fact that the set of nonnegative 
solutions of (1) is a projection of that of (Sl)-(S3), which is a convex 
polytope. n 
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CONCLUDING REMARKS 

(1) The system (Sl)-(S3) has 2m+2jL(+(K( rows and n+JKI columns 
(I . . . ( denoting th e number of elements), hence the size of 1 K 1 is significant. 

(2) Let cf =Ci for some in L. Then yi = vi, and denoting the common 
value by yi, the two corresponding inequalities in (S2) can be replaced by a 
single equation 

yiXi + x &Yii =o. (6) 
is% 

Moreover, if yi =O and flii >O for each i E K,, then yii = 0 for i E Ki, so that 
the system (SI)-(S3) can be reduced by dropping out the equation (6), the 
inequalities in (S3) with right-hand sides xi, and the columns corresponding to 
variables yii (i E Ki), which can be formally done by putting 

L: =L\{i} 

K:=K\(KiX{i}). 

(3) An optimization problem 

max crx, 
M 

where M is the set of nonnegative solutions of (1) can be solved as a linear 
programming problem 

max{c%+Ory((X, y) nonnegative solution of (Sl)-(S3)). 
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