INPUT-OUTPUT MODEL WITH INTERVAL DATA¹

By Jiri Rohn

IN THIS PAPER, we deal with a modified input-output model of the form

$$(E - A^I)x^I = y^I,$$

where A^I is an interval matrix and x^I , y^I are interval vectors (i.e. their elements are intervals of real numbers). This model can be used, when some (or all) input-output coefficients are not exactly known and are estimated by intervals, to solve the two main problems: (α) given x^I , find $y^I:(\beta)$ given y^I , find x^I . After giving some preliminary results, we show in Theorem 1 that the interval equation $(E - A^I)x^I = y^I$ can be in a certain sense replaced by a linear system. Using this result, in the next two theorems we give explicit solutions to the above problems (α) , (β) .

Throughout the paper, we shall use the following notation. If $B = (\underline{b}_u)$, $\overline{B} = (\overline{b}_u)$ are matrices (or, especially, vectors) of the same size, we write $B \leq \overline{B}$ if $\underline{b}_u \leq \overline{b}_u$ for all i, j. If $B \leq \overline{B}$, then the set $[B, \overline{B}] = \{B^!B \leq B \leq \overline{B}\}$ is called matrix (vector) interval and is denoted by B^I . An interval $[B, \overline{B}]$ is said to be nonnegative if $B \geq 0$. 0 being the zero matrix.

The aim of this paper is to study the basic input-output equation

$$(1) (E-A)x = x$$

(see [1,2]) with data being given by intervals. We assume that the n by n matrix of input-output coefficients A is not exactly known and that instead only a matrix interval $A^I = [A, \overline{A}]$ containing A is given. Then the matrix E - A lies in the matrix interval $[E - \overline{A}, E - A]$, which will be denoted by $E - A^I$. Usually, the matrix A in A in A in assumed to be nonnegative and to have all the column sums less than 1. We shall require any matrix belonging to A^I to possess these two properties. This leads to the assumptions:

(i)
$$A \ge 0$$
.

(ii)
$$\sum_{i=1}^{n} \bar{a}_{ij} < 1 \qquad (j=1,\ldots,n)$$

In the sequel, we shall assume these two assumptions to be satisfied without mentioning them in the theorems. Using the matrix norm $||A|| = \max_i \sum_i |a_{ij}|$, from (i), (ii) we have $||\bar{A}|| < 1$, so that, according to the well-known theorem, $(E - \bar{A})^{-1} = \sum_{i=0}^{\infty} \bar{A}^i \ge 0$. Thus for the matrix F, defined by

$$F = (E - \underline{A})(E - \overline{A})^{-1}$$

we have $F \ge E$, because $F = E + (\bar{A} - \underline{A})(E - \bar{A})^{-1}$. Let us denote by \bar{A}_1 the matrix formed from \bar{A} by replacing its diagonal elements by zeros, and by \bar{A}_2 the diagonal matrix $\bar{A} - \bar{A}_1$. In the same way, we form the matrices \underline{A}_1 , \underline{A}_2 from \underline{A} . Now, we can define the matrix

$$H = E - \underline{A}_2 + F \overline{A}_1,$$

which will play an important role in the sequel. Since $a_{ii} \leq \sum_{i=1}^{n} \hat{a}_{ij} < 1$ for $j = 1, \ldots, n$, we have $E - A_2 \geq 0$, which, combined with the nonnegativity of F, yields $H \geq 0$. Let x^I be a nonnegative gross output interval. Then

$$Y = \{y | y = (E - A)x, A \in A^{T}, x \in x^{T}\}$$

is the set of all possible net output vectors for A belonging to A' and x varying in x'. Since Y is generally not an interval, it cannot be simply equated to y'. Therefore, we introduce the

¹ This paper was improved by the comments and suggestions made by two anonymous referees.

following definition: we say that nonnegative vector intervals x', y' satisfy the equation

$$(2) (E - A^I)x^I = y^I$$

if y^I is the smallest interval containing Y (or, in other words, y^I is the interval hull of Y). In the following theorem, we give a description of solutions to (2).

THEOREM 1: Nonnegative intervals $x^I = [\underline{x}, \overline{x}], \ y^I = [\underline{y}, \overline{y}]$ satisfy (2) if and only if they have the form

$$(3.1) y \ge 0,$$

$$(3.2) \bar{y} = F\underline{y} + v,$$

(3.3)
$$\underline{x} = (E - \overline{A})^{-1} (y + \overline{A}_1 u),$$

$$(3.4) \bar{x} = \underline{x} + u,$$

where, u, v are nonnnegative vectors satisfying the equation

$$(4) \cdot Hu = v$$

PROOF: (a) First, we shall prove the "only if" part of the theorem. Let $x^I = [\underline{x}, \overline{x}]$, $y^I = [\underline{y}, \overline{y}]$ satisfy (2). Then, due to the definition, for $i = 1, \ldots, n$ we have

(5.1)
$$y_{i} = \min\{((E - A)x)_{i} | A \in A^{I}, x \in x^{I}\}\$$

$$= (1 - \bar{a}_{i})y_{i} - \sum_{j \neq i} \bar{a}_{ij}\bar{x}_{j} = ((E - \bar{A}_{2})y_{i} - \bar{A}_{1}\bar{x})_{i}$$

(5.2)
$$\bar{y}_i = \max\{((E - A)x)_i | A \in A^I, x \in x^I\}$$

$$= (1 - g_{ii})\bar{x}_i - \sum_{i \neq i} g_{ii}x_i = ((E - A_2)\bar{x} - A_1x)_i$$

which gives

(6.1)
$$\underline{y} = (E - \bar{A}_2)\underline{x} - \bar{A}_1\bar{x},$$

(6.2)
$$\bar{y} = (E - A_2)\bar{x} - A_1\bar{x}$$
.

Take $u = \bar{x} - x$, $v = \bar{y} - Fy$. Then u is nonnegative, (3.1), (3.2), (3.4) are clearly met and putting $\bar{x} = x + u$, $\bar{y} = Fy + v$ into (6.1), (6.2), we obtain (3.3) and (4). The nonnegativity of v

putting $x = \underline{x} + u$, $y = F\underline{y} + v$ into (0.1), (0.2), we obtain (3.3) and (4). The nonnegative of follows from (4) in view of the nonnegativity of H and u.

(b) To prove the "if" part of the theorem, we first observe that (3.1)–(3.4) imply $0 \le x \le \overline{x}$ and $0 \le y \le \overline{y}$ (since $F \ge E$), so that x^I , y^I are nonnegative intervals. Then, by substitution of the expressions $u = \overline{x} - x$, $v = \overline{y} - Fy$ from (3.4), (3.2) into (3.3), (4), we obtain (6.1), (6.2), which in the light of (5.1), (5.2) means that x^I , y^I satisfy (2), and the proof is complete.

REMARK: The theorem shows that the interval equation (2) can be in a certain sense replaced by the linear system (4) for the "parameters" u, v of intervals x^I, y^I . Note that in case $\underline{A} = \overline{A} = A$ the matrix H is formed by absolute values of elements of E - A.

Now, we shall turn to the problems (α) , (β) mentioned at the beginning of the paper. First, suppose that an interval x^I is given; the following theorem gives a necessary and sufficient condition for the nonnegative solvability of (2) in y^I .

THEOREM 2: Let $x^I = [\underline{x}, \overline{x}]$ be a nonnegative interval. Then (2) has a nonnegative solution y^I if and only if

$$(7) (E - \bar{A}_2) \underline{x} \ge \bar{A}_1 \bar{x}$$

holds. If this condition is met, then the solution $y^I = [\underline{y}, \overline{y}]$ is given by

(8.1)
$$\underline{y} = (E - \vec{A})\underline{x} - \vec{A}_1(\bar{x} - \underline{x}),$$

(8.2)
$$\bar{y} = F \underline{y} + H(\bar{x} - \underline{x}).$$

PROOF: If $y^t = [y, \bar{y}]$ satisfies (2), then Theorem 1, (3.3) gives $(E - \bar{A})\bar{y} = \bar{y} + \bar{A}_1 u$ $\Rightarrow \bar{A}_1(\bar{x} - \bar{y})$, which implies (7). Conversely, if (7) holds, then \bar{y} defined by (8.1) is nonnegative and the interval $y^t = [\bar{y}, \bar{y}]$ satisfies (2) according to Theorem 1. Q.E.D.

Note that when $A = \overline{A} = A$, $y = \overline{x} = x$, condition (7) is reduced to the usual condition $(E - A)x \ge 0$. For the nonnegative solvability of (2) in the case when y^T is given, we need an additional assumption of invertibility of H:

THEOREM 3: Let H be nonsingular and let $y^i = [y, \bar{y}]$ be a nonnegative interval. Then (2) has a nonnegative solution $x^i = [x, \bar{x}]$ if and only if

$$(9) H^{-1}\tilde{y} \geqslant H^{-1}F\underline{y}$$

holds. If this condition is met, then the solution is given by

(10.1)
$$x = (E - \bar{A})^{-1}(y + \bar{A}_1 H^{-1}(\bar{y} - Fy)),$$

(10.2)
$$\bar{x} = \underline{x} + H^{-1}(\bar{y} - F\underline{y}).$$

PROOF: If (2) has a nonnegative solution x^I subject to y^I , then Theorem 1, (3.2) implies $H^{-1}\bar{y} = H^{-1}Fy + u \ge H^{-1}Fy$, which is (9). Conversely, if (9) holds, then taking $v = \bar{y} - Fy$, we have $u = H^{-1}v \ge 0$, hence also $v = Hu \ge 0$ and defining x, \bar{x} by (10.1), (10.2), we obtain a property of the property of v = u. we obtain a nonnegative solution $x^{T} = [x, \bar{x}]$ of (2) according to Theorem 1.

Note that condition (9) is stronger than $\bar{y} \ge y$ since premultiplying it by the nonnegative matrix H yields $\bar{y} \ge F\bar{y}$ which in view of $F \ge E$ implies $\bar{y} \ge y$. If $\bar{A} = \bar{A} = A$, $\bar{y} = \bar{y} = y$, then (9) holds trivially, because both sides of it are equal to $H^{-1}y$ in this case.

Some other results concerning the input-output model with interval data are given in [3, 4].

Charles University, Prague

Manuscript received January, 1979; revision received April, 1979.

REFERENCES

- [1] LEONTHEFF, W. W.: The Structure of American Economy, 1919-1939. London: Oxford Uni-
- LEONTIFFF, W. W.: The Structure of American Economy, 1919–1939. London: Oxford University Press, 1949.
 [2] NIKAIDO, H.: Convex Structures and Economic Theory. New York: Academic Press, 1968.
 [3] ROHN, J.: Input-Output Planning with Inexact Data. Freiburg i. Br.: Freiburger Intervall Berichte 78/9, 1978.
 [4]
- 10/7, 17/0.

 "Correction of Coefficients of the Input-Output Model," Zietschrift für Agnewandte Mathematik und Mechanik, 58 (1978), T494-T495.