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I. INTRODUCTION

An interval linear programming problem is a problem of

the form

. max {ch J alx = oI, x> O}, (P)
where Al = falagas 'A'}, A and A being m by n matrices
satisfying A < A, whose rows are denoted by 2y Ei (i = 1ly0eey
m), and b¥ ={b| b £ b< B}, b= (b;) and 5 = (5,) baing
m-vectors with b < b. An n-vector x is said to be a solution
to Alx = bl if there are 4 € AT and b€ b' such that Ax = b
holds. It is well-known (1) that nonnegative solutions of

I

A™x = bI can be described as nonnegative solutions of the
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system Ax < b, Ax > b, so that (P) is equivalent to the linear
programming problem

max{ch’Axss, -AxX € =b, X

Vv

0}. (2,)
For recent results concerning (P), see (2). In the present pa-
per, we give a duality theorem for interval linear programming
and various forms of optimality criteria.

Pirst we introduce some notations. Let y = (yi) be an .
m-vector; then by Ay we denote the m by n matrix whose i-th
row is equal to &,
(i = 1,0e0ym). Similarly, we denote by by the m-vector defin-

if y; > O and is equal to a; if y; < O

ed by (b) —’B if y; > 0 and (b) = b; otherwise. It is
Ty AyyforanyAeAIande by

for any b € bI. Moreover, for the m-vectors y » ¥ defined by

easy to verify that A

(U+)i = max{yi, 0} ’ (Y-)i = max{-yi, 0} (i =121y00eym), we
have A;‘l;y = ATy"' - A y~ and byy = _T . bT « In the sequel,

we use the usual linear programming terminology, see (3).
II. DUALITY THEOREM .

The dual problem to (P,)

min{FTu-gTv]ATu-KTv;c. u

A\

0, v

\%
<
L)
o
St

is closely connected with the problem
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min {bgy ' Agy > o}, (D)

as the following lemma shows:

Lemma 2,1, We have (i)=(v):
(i) (Do) is feasible if and only if (D) is feasible.
(ii) (D,) is unbounded if and only if (D) is unbounded.
(iii) If u,v is an optimal solution to (D)) theny =u -~ v
is an optimal solution to (D).
. (iv) If y is an optimal solution to (D), then u = y*, v =
¥y is an optimal solution %o (Do)‘
(v) If both (DO) and (D) have optimal solutions, then they

have a common optimal value.

Proof. Let u,v be a feasible solution of (D)) and let y =
u - v. Then, we have A§y> A"Eu - KTV > ¢, hence y is a feas-
ible solution of (D) with bg:y < BTu - blv, which proves the
"only if" parts of (i), (ii). Conversely, let y; be a feasible
solution of (D) and let uy = y{, vy = y;. Then gTul - KTvl =
Aglyl > ¢y hence u;,v; is & feasible solution of (D) with
’BTul - :o_Tvl = bglyl, which completes the proof of (i), (ii).
us if one of the problems (Do)’ (D) has an optimal solution,
then so does the second one. Let u,v and y, be optimal solu-
tions of (Do) and (D), respectively and let y and u,,v; be
defined as above., Then, we have ‘BTul - p_Tvl = bglyl < bﬁy <
Py - _lg“rv and the optimality of u,v implies =r'J'Tu.l - pTvl =
Pu ~ QTV, hence u,,v, is an optimal solution to (Do)’ v is
an optimal solution to (D) and (Do)’ (D) have a common optim=-

al value, which proves (iii), (iv), (v), Q.E.D.
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With the help of the Lemma 2.1, we can prove the follow=-
ing duality theorem for the problems (P), (D):

Theorem 2.1, If both (P) and (D) are feasible, then they

both have optimal solutions and have a common optimal value,
If one of the problems (P), (D) is infeasible, then the second

one is either infeasible, or unbounded.

Proof, If both (P) and (D) are feasible, then (Po) and .
(Do) are also feasible and the classical duality theorem (3)
as applied to (Po), (Do) gives that they both have optimal
solutions and have a common optimal value, hence so do (P)
and (D) due to Lemma 2.1l. If (P) is infeasible, then so is
(Po) and the duality theorem states that (Do) is infeasible
or unbounded, hence so is (D) in accordance with Lemma 2.1l.

For (D) infeasible, an analogous argument applies. Q.E.D.

Note 2.1, Theorem 2.1l implies that if x,y are feasible

solutions of (P), (D), then el T

xgbgy and if e"x = bgy, then
x, y are optimal solutions of the respective problems.

A Parkas—type theorem can be derived directly from the .
duality theorem.

I

Theorem 2.2, A system A" X = bI has a nonnegative solution

if and only if A;:y > O implies bgy > 0 for any y.

Proof. Consider the two problems

max {oTx] Alx = o, x> O} (%)

min {bly| A%y > o} (p°)
vy 2y 2 Uy
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1f alx = bl has a nonnegative solution, $hen both (F°) and
(D°) are feasible (0 is a feasible solution to (D°)), hence
the optimal value of (D°) is O due to Theorem 2.1, so that
any y with A§y 2 0 satisfies b?y 2 0. Conversely, if the con=
dition of the theorem is met, then (D°) is bounded, hence

(P°) is feasible, Q.E.D.
. IITI. OPTIMALITY CRITERIA

In this section, we give various forms of optimality
criteria for the problems (P), (D). First, we have an analogue

to the classical case:

Theorem 3.1, Let x, y be feasible solutions of (P), (D).
Thén, they are optimal solutions of the respective problems

if and only if

xT(Aiy -¢) =0

. y (Ayx-by) =0

hold.

Proof, Define u,v by u = y'y v = y » Then in view of the
Lemma 2.l., X and y ars optimal solutions of (P), (D) if and
only if x and u,v are optimal solutions of (Po)' (Do)’ the

latter case being equivalent (see (3)) to
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(4T - Zv = 0) = 0
uT(&x -%) + VT(B - Ax) = O, 2

Thus to complete the proof, it suffices to verify that

w(aT - Ty - ¢) = xT(Agy - c) i
uT(Ax -D) + vT(g - 2x) = yT(Ayx - by)

hold. .

Note 3.l. The conditions (1) can be rewritten in an
equivalent form
T = =
xj> 0 implies (Ayy).’i ¢, (3 = 1yeeeyn)

Jd
v # O implies (Ayx)i (

by)

i (i L) lguoo.m)u

In fact, the first implication is obvious. If y; > 0, then

u; = (y"’),_.l > 0, and since x is a feasible solution of (Po)’

(2) implies (ax); = B3 ify; < 0, then v; = (77); > 0y

hence (Ax); = by, so that (%,x):l = (by)i in both the ocases.
Theorem 3.2. Let b <D and let both (P) and (D) be feas-

ible. Then, they have a pair of optimal solutions X, y satia-

fying

-

cj (j = 1'ooopn) (301)

(by)i (i = 1,0...ﬂ).(302)

: T
x;> 0 if and only if (Ayy)j
y; # 0 if and only if (A x)y
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Proof. Since both (P,) and (D,) are feasible, according
to a well-known theorem (see (3)) they have a pair of optimal
solutions x and u,v satisfying: x5 > 0 iff (ATu - K‘J“v)j = oy
(3 = Iyeeepn)y ug > 0 iff (Ax); =, and v; > 0 iff (Ex); = b,
(i = 1,00eym)s Assume that u;v; > 0 for some i; then, we have
0£ (@& - a)x); = b, - Ta'i < 0, a contradiction. Hence the
vector y = u = v is an optimal solution to (D) satisfying
AnTry = _A_T - KTV, which immediately proves (3.l). If ¥yi =0y
hen u; = v; = 0, hence (ax); < -b'i, which means (Ayx)i < (by)i;
the "only if" part of (3.2) follows from the previous note.
Q.E.D.

Now we shall turn to another sort of optimality criteria.

1f & € AL and b € b, then the problem

max{ch,Ax=b, x> O} (Bg)
is called a subproblem of the problem (P). Obviously, (Ps)
has a dual problem

m{bTylATy2 c} 5 (Dg)

A subproblem whose system of constraints has the form Ax = b,
for some m~vector z is called an extremal subproblem of (P).
Thus the i~th row of an extremal subproblem of (P) has either
the form a;x = B, or the form a;x = b; (i =1,..0,m), hence

(P) has at most 2® mutually different extremal subproblems.
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Theorem 3.3. Let x be an optimal solution of a subproblenm
(Ps) of (P). Then, it is also an optimal solution to (P) if
and only if (Ds) has an optimal solution y satisfying Aﬁy >c
and bly = b§y.

Proof, If x is an optimal solution to (P), then taking
an arbitrary optimal solution y of (D) (which exists due to
Theorem 2.1), we have ATy> Agy > ¢ and bTy; eTx = b?y) bTy,
which means that y is an optimal solution of (D) with by = )
bg +» Conversely, if an optimal solution of (Ds) satisfies
Agy > ¢ and bly = b;],"y, then it is a feasible solution of (D)

with ch = bTy, hence x is an optimal solution to (P) due to

y
Note 2.1. QeE.Ds

Theorem 3.,4. Let b < b and let x be an optimal solution
of an extremal subproblem (PS) of (P). Then, x is also an
optimal solution to (P) if and only if (Ds) has an optimal
solution y satisfying bTy = bg:y.

Proof. In view of Theorem 3.3, it will suffice to show
that for any optimal solution y of (DS), bTy = bgy implies
Agsy > ¢. In fact, if y, > O for some i, then b, = B_i’ hence
the i-th row of A is &5 if ¥ £ 0, then bi = :D-i and the i~th
row of A is Ei. This gives Afry = ATy > ©y Q.E.D.

A subproblem (Ps) of (P) is said to be an equivalent one
if its set of optimal solutions is equal to that of (P).

We have this characterization:
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Theorem 3.5. Let b < b and let (P) have an optimal solu-
tion. Then, (P) has an equivalent extremal subproblem if and
only if (D) has an optimal solution y such that v #0

(i = l’oao,m)o

Froof, Let x, u, v and y be defined as in the proof of
Theorem 3.2, If y; = 0 for some i, then u; =v; = 0, hence
(ax); < ’Bi and (K’x)i > by, so that the optimal solution x of
P) cannot be a feasible solution of any extremal subproblem
of (P). Thus y is an optimal solution of (D) satisfying
¥y #0 (i =1,.00,m), Conversely, if (D) has an optimal
gsolution with this property, then Note 3.1. shows that
max {ch | Agx =Dy, x 0} is the desired equivalent

y
extremal subproblem of (P), which completes the proof.
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